This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a bounded-above set of extended reals is less than infinity. (Contributed by NM, 30-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supxrbnd1 | |- ( A C_ RR* -> ( E. x e. RR A. y e. A y < x <-> sup ( A , RR* , < ) < +oo ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralnex | |- ( A. x e. RR -. A. y e. A y < x <-> -. E. x e. RR A. y e. A y < x ) |
|
| 2 | rexr | |- ( x e. RR -> x e. RR* ) |
|
| 3 | ssel2 | |- ( ( A C_ RR* /\ y e. A ) -> y e. RR* ) |
|
| 4 | xrlenlt | |- ( ( x e. RR* /\ y e. RR* ) -> ( x <_ y <-> -. y < x ) ) |
|
| 5 | 2 3 4 | syl2anr | |- ( ( ( A C_ RR* /\ y e. A ) /\ x e. RR ) -> ( x <_ y <-> -. y < x ) ) |
| 6 | 5 | an32s | |- ( ( ( A C_ RR* /\ x e. RR ) /\ y e. A ) -> ( x <_ y <-> -. y < x ) ) |
| 7 | 6 | rexbidva | |- ( ( A C_ RR* /\ x e. RR ) -> ( E. y e. A x <_ y <-> E. y e. A -. y < x ) ) |
| 8 | rexnal | |- ( E. y e. A -. y < x <-> -. A. y e. A y < x ) |
|
| 9 | 7 8 | bitr2di | |- ( ( A C_ RR* /\ x e. RR ) -> ( -. A. y e. A y < x <-> E. y e. A x <_ y ) ) |
| 10 | 9 | ralbidva | |- ( A C_ RR* -> ( A. x e. RR -. A. y e. A y < x <-> A. x e. RR E. y e. A x <_ y ) ) |
| 11 | 1 10 | bitr3id | |- ( A C_ RR* -> ( -. E. x e. RR A. y e. A y < x <-> A. x e. RR E. y e. A x <_ y ) ) |
| 12 | supxrunb1 | |- ( A C_ RR* -> ( A. x e. RR E. y e. A x <_ y <-> sup ( A , RR* , < ) = +oo ) ) |
|
| 13 | supxrcl | |- ( A C_ RR* -> sup ( A , RR* , < ) e. RR* ) |
|
| 14 | nltpnft | |- ( sup ( A , RR* , < ) e. RR* -> ( sup ( A , RR* , < ) = +oo <-> -. sup ( A , RR* , < ) < +oo ) ) |
|
| 15 | 13 14 | syl | |- ( A C_ RR* -> ( sup ( A , RR* , < ) = +oo <-> -. sup ( A , RR* , < ) < +oo ) ) |
| 16 | 11 12 15 | 3bitrd | |- ( A C_ RR* -> ( -. E. x e. RR A. y e. A y < x <-> -. sup ( A , RR* , < ) < +oo ) ) |
| 17 | 16 | con4bid | |- ( A C_ RR* -> ( E. x e. RR A. y e. A y < x <-> sup ( A , RR* , < ) < +oo ) ) |