This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of the composition of two functions is the inverse image by the inner function of the support of the outer function. (Contributed by AV, 30-May-2019) Extract this statement from the proof of supp0cosupp0 . (Revised by SN, 15-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suppco | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ( ◡ 𝐺 “ ( 𝐹 supp 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coexg | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( 𝐹 ∘ 𝐺 ) ∈ V ) | |
| 2 | simpl | ⊢ ( ( 𝑍 ∈ V ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) ) → 𝑍 ∈ V ) | |
| 3 | suppimacnv | ⊢ ( ( ( 𝐹 ∘ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ( ◡ ( 𝐹 ∘ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) ) | |
| 4 | 1 2 3 | syl2an2 | ⊢ ( ( 𝑍 ∈ V ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) ) → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ( ◡ ( 𝐹 ∘ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) ) |
| 5 | cnvco | ⊢ ◡ ( 𝐹 ∘ 𝐺 ) = ( ◡ 𝐺 ∘ ◡ 𝐹 ) | |
| 6 | 5 | imaeq1i | ⊢ ( ◡ ( 𝐹 ∘ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) = ( ( ◡ 𝐺 ∘ ◡ 𝐹 ) “ ( V ∖ { 𝑍 } ) ) |
| 7 | 6 | a1i | ⊢ ( ( 𝑍 ∈ V ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) ) → ( ◡ ( 𝐹 ∘ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) = ( ( ◡ 𝐺 ∘ ◡ 𝐹 ) “ ( V ∖ { 𝑍 } ) ) ) |
| 8 | imaco | ⊢ ( ( ◡ 𝐺 ∘ ◡ 𝐹 ) “ ( V ∖ { 𝑍 } ) ) = ( ◡ 𝐺 “ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) | |
| 9 | simprl | ⊢ ( ( 𝑍 ∈ V ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) ) → 𝐹 ∈ 𝑉 ) | |
| 10 | suppimacnv | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) | |
| 11 | 9 2 10 | syl2anc | ⊢ ( ( 𝑍 ∈ V ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) ) → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) |
| 12 | 11 | imaeq2d | ⊢ ( ( 𝑍 ∈ V ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) ) → ( ◡ 𝐺 “ ( 𝐹 supp 𝑍 ) ) = ( ◡ 𝐺 “ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) ) |
| 13 | 8 12 | eqtr4id | ⊢ ( ( 𝑍 ∈ V ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) ) → ( ( ◡ 𝐺 ∘ ◡ 𝐹 ) “ ( V ∖ { 𝑍 } ) ) = ( ◡ 𝐺 “ ( 𝐹 supp 𝑍 ) ) ) |
| 14 | 4 7 13 | 3eqtrd | ⊢ ( ( 𝑍 ∈ V ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) ) → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ( ◡ 𝐺 “ ( 𝐹 supp 𝑍 ) ) ) |
| 15 | 14 | ex | ⊢ ( 𝑍 ∈ V → ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ( ◡ 𝐺 “ ( 𝐹 supp 𝑍 ) ) ) ) |
| 16 | prcnel | ⊢ ( ¬ 𝑍 ∈ V → ¬ 𝑍 ∈ V ) | |
| 17 | 16 | intnand | ⊢ ( ¬ 𝑍 ∈ V → ¬ ( ( 𝐹 ∘ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) ) |
| 18 | supp0prc | ⊢ ( ¬ ( ( 𝐹 ∘ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ∅ ) | |
| 19 | 17 18 | syl | ⊢ ( ¬ 𝑍 ∈ V → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ∅ ) |
| 20 | 16 | intnand | ⊢ ( ¬ 𝑍 ∈ V → ¬ ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ) |
| 21 | supp0prc | ⊢ ( ¬ ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) = ∅ ) | |
| 22 | 20 21 | syl | ⊢ ( ¬ 𝑍 ∈ V → ( 𝐹 supp 𝑍 ) = ∅ ) |
| 23 | 22 | imaeq2d | ⊢ ( ¬ 𝑍 ∈ V → ( ◡ 𝐺 “ ( 𝐹 supp 𝑍 ) ) = ( ◡ 𝐺 “ ∅ ) ) |
| 24 | ima0 | ⊢ ( ◡ 𝐺 “ ∅ ) = ∅ | |
| 25 | 23 24 | eqtrdi | ⊢ ( ¬ 𝑍 ∈ V → ( ◡ 𝐺 “ ( 𝐹 supp 𝑍 ) ) = ∅ ) |
| 26 | 19 25 | eqtr4d | ⊢ ( ¬ 𝑍 ∈ V → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ( ◡ 𝐺 “ ( 𝐹 supp 𝑍 ) ) ) |
| 27 | 26 | a1d | ⊢ ( ¬ 𝑍 ∈ V → ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ( ◡ 𝐺 “ ( 𝐹 supp 𝑍 ) ) ) ) |
| 28 | 15 27 | pm2.61i | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ( ◡ 𝐺 “ ( 𝐹 supp 𝑍 ) ) ) |