This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of the composition of two functions is the inverse image by the inner function of the support of the outer function. (Contributed by AV, 30-May-2019) Extract this statement from the proof of supp0cosupp0 . (Revised by SN, 15-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suppco | |- ( ( F e. V /\ G e. W ) -> ( ( F o. G ) supp Z ) = ( `' G " ( F supp Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coexg | |- ( ( F e. V /\ G e. W ) -> ( F o. G ) e. _V ) |
|
| 2 | simpl | |- ( ( Z e. _V /\ ( F e. V /\ G e. W ) ) -> Z e. _V ) |
|
| 3 | suppimacnv | |- ( ( ( F o. G ) e. _V /\ Z e. _V ) -> ( ( F o. G ) supp Z ) = ( `' ( F o. G ) " ( _V \ { Z } ) ) ) |
|
| 4 | 1 2 3 | syl2an2 | |- ( ( Z e. _V /\ ( F e. V /\ G e. W ) ) -> ( ( F o. G ) supp Z ) = ( `' ( F o. G ) " ( _V \ { Z } ) ) ) |
| 5 | cnvco | |- `' ( F o. G ) = ( `' G o. `' F ) |
|
| 6 | 5 | imaeq1i | |- ( `' ( F o. G ) " ( _V \ { Z } ) ) = ( ( `' G o. `' F ) " ( _V \ { Z } ) ) |
| 7 | 6 | a1i | |- ( ( Z e. _V /\ ( F e. V /\ G e. W ) ) -> ( `' ( F o. G ) " ( _V \ { Z } ) ) = ( ( `' G o. `' F ) " ( _V \ { Z } ) ) ) |
| 8 | imaco | |- ( ( `' G o. `' F ) " ( _V \ { Z } ) ) = ( `' G " ( `' F " ( _V \ { Z } ) ) ) |
|
| 9 | simprl | |- ( ( Z e. _V /\ ( F e. V /\ G e. W ) ) -> F e. V ) |
|
| 10 | suppimacnv | |- ( ( F e. V /\ Z e. _V ) -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) |
|
| 11 | 9 2 10 | syl2anc | |- ( ( Z e. _V /\ ( F e. V /\ G e. W ) ) -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) |
| 12 | 11 | imaeq2d | |- ( ( Z e. _V /\ ( F e. V /\ G e. W ) ) -> ( `' G " ( F supp Z ) ) = ( `' G " ( `' F " ( _V \ { Z } ) ) ) ) |
| 13 | 8 12 | eqtr4id | |- ( ( Z e. _V /\ ( F e. V /\ G e. W ) ) -> ( ( `' G o. `' F ) " ( _V \ { Z } ) ) = ( `' G " ( F supp Z ) ) ) |
| 14 | 4 7 13 | 3eqtrd | |- ( ( Z e. _V /\ ( F e. V /\ G e. W ) ) -> ( ( F o. G ) supp Z ) = ( `' G " ( F supp Z ) ) ) |
| 15 | 14 | ex | |- ( Z e. _V -> ( ( F e. V /\ G e. W ) -> ( ( F o. G ) supp Z ) = ( `' G " ( F supp Z ) ) ) ) |
| 16 | prcnel | |- ( -. Z e. _V -> -. Z e. _V ) |
|
| 17 | 16 | intnand | |- ( -. Z e. _V -> -. ( ( F o. G ) e. _V /\ Z e. _V ) ) |
| 18 | supp0prc | |- ( -. ( ( F o. G ) e. _V /\ Z e. _V ) -> ( ( F o. G ) supp Z ) = (/) ) |
|
| 19 | 17 18 | syl | |- ( -. Z e. _V -> ( ( F o. G ) supp Z ) = (/) ) |
| 20 | 16 | intnand | |- ( -. Z e. _V -> -. ( F e. _V /\ Z e. _V ) ) |
| 21 | supp0prc | |- ( -. ( F e. _V /\ Z e. _V ) -> ( F supp Z ) = (/) ) |
|
| 22 | 20 21 | syl | |- ( -. Z e. _V -> ( F supp Z ) = (/) ) |
| 23 | 22 | imaeq2d | |- ( -. Z e. _V -> ( `' G " ( F supp Z ) ) = ( `' G " (/) ) ) |
| 24 | ima0 | |- ( `' G " (/) ) = (/) |
|
| 25 | 23 24 | eqtrdi | |- ( -. Z e. _V -> ( `' G " ( F supp Z ) ) = (/) ) |
| 26 | 19 25 | eqtr4d | |- ( -. Z e. _V -> ( ( F o. G ) supp Z ) = ( `' G " ( F supp Z ) ) ) |
| 27 | 26 | a1d | |- ( -. Z e. _V -> ( ( F e. V /\ G e. W ) -> ( ( F o. G ) supp Z ) = ( `' G " ( F supp Z ) ) ) ) |
| 28 | 15 27 | pm2.61i | |- ( ( F e. V /\ G e. W ) -> ( ( F o. G ) supp Z ) = ( `' G " ( F supp Z ) ) ) |