This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the operation constructing the support of a function. (Contributed by AV, 31-Mar-2019) (Revised by AV, 6-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suppval | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑋 supp 𝑍 ) = { 𝑖 ∈ dom 𝑋 ∣ ( 𝑋 “ { 𝑖 } ) ≠ { 𝑍 } } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-supp | ⊢ supp = ( 𝑥 ∈ V , 𝑧 ∈ V ↦ { 𝑖 ∈ dom 𝑥 ∣ ( 𝑥 “ { 𝑖 } ) ≠ { 𝑧 } } ) | |
| 2 | 1 | a1i | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → supp = ( 𝑥 ∈ V , 𝑧 ∈ V ↦ { 𝑖 ∈ dom 𝑥 ∣ ( 𝑥 “ { 𝑖 } ) ≠ { 𝑧 } } ) ) |
| 3 | dmeq | ⊢ ( 𝑥 = 𝑋 → dom 𝑥 = dom 𝑋 ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑧 = 𝑍 ) → dom 𝑥 = dom 𝑋 ) |
| 5 | imaeq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 “ { 𝑖 } ) = ( 𝑋 “ { 𝑖 } ) ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑧 = 𝑍 ) → ( 𝑥 “ { 𝑖 } ) = ( 𝑋 “ { 𝑖 } ) ) |
| 7 | sneq | ⊢ ( 𝑧 = 𝑍 → { 𝑧 } = { 𝑍 } ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑧 = 𝑍 ) → { 𝑧 } = { 𝑍 } ) |
| 9 | 6 8 | neeq12d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑧 = 𝑍 ) → ( ( 𝑥 “ { 𝑖 } ) ≠ { 𝑧 } ↔ ( 𝑋 “ { 𝑖 } ) ≠ { 𝑍 } ) ) |
| 10 | 4 9 | rabeqbidv | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑧 = 𝑍 ) → { 𝑖 ∈ dom 𝑥 ∣ ( 𝑥 “ { 𝑖 } ) ≠ { 𝑧 } } = { 𝑖 ∈ dom 𝑋 ∣ ( 𝑋 “ { 𝑖 } ) ≠ { 𝑍 } } ) |
| 11 | 10 | adantl | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ ( 𝑥 = 𝑋 ∧ 𝑧 = 𝑍 ) ) → { 𝑖 ∈ dom 𝑥 ∣ ( 𝑥 “ { 𝑖 } ) ≠ { 𝑧 } } = { 𝑖 ∈ dom 𝑋 ∣ ( 𝑋 “ { 𝑖 } ) ≠ { 𝑍 } } ) |
| 12 | elex | ⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ V ) | |
| 13 | 12 | adantr | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → 𝑋 ∈ V ) |
| 14 | elex | ⊢ ( 𝑍 ∈ 𝑊 → 𝑍 ∈ V ) | |
| 15 | 14 | adantl | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → 𝑍 ∈ V ) |
| 16 | dmexg | ⊢ ( 𝑋 ∈ 𝑉 → dom 𝑋 ∈ V ) | |
| 17 | 16 | adantr | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → dom 𝑋 ∈ V ) |
| 18 | rabexg | ⊢ ( dom 𝑋 ∈ V → { 𝑖 ∈ dom 𝑋 ∣ ( 𝑋 “ { 𝑖 } ) ≠ { 𝑍 } } ∈ V ) | |
| 19 | 17 18 | syl | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → { 𝑖 ∈ dom 𝑋 ∣ ( 𝑋 “ { 𝑖 } ) ≠ { 𝑍 } } ∈ V ) |
| 20 | 2 11 13 15 19 | ovmpod | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑋 supp 𝑍 ) = { 𝑖 ∈ dom 𝑋 ∣ ( 𝑋 “ { 𝑖 } ) ≠ { 𝑍 } } ) |