This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The filter of supersets of X \ U does not cluster at any point of the open set U . (Contributed by Mario Carneiro, 11-Apr-2015) (Revised by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supnfcls | |- ( ( J e. ( TopOn ` X ) /\ U e. J /\ A e. U ) -> -. A e. ( J fClus { x e. ~P X | ( X \ U ) C_ x } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjdif | |- ( U i^i ( X \ U ) ) = (/) |
|
| 2 | simpr | |- ( ( ( J e. ( TopOn ` X ) /\ U e. J /\ A e. U ) /\ A e. ( J fClus { x e. ~P X | ( X \ U ) C_ x } ) ) -> A e. ( J fClus { x e. ~P X | ( X \ U ) C_ x } ) ) |
|
| 3 | simpl2 | |- ( ( ( J e. ( TopOn ` X ) /\ U e. J /\ A e. U ) /\ A e. ( J fClus { x e. ~P X | ( X \ U ) C_ x } ) ) -> U e. J ) |
|
| 4 | simpl3 | |- ( ( ( J e. ( TopOn ` X ) /\ U e. J /\ A e. U ) /\ A e. ( J fClus { x e. ~P X | ( X \ U ) C_ x } ) ) -> A e. U ) |
|
| 5 | sseq2 | |- ( x = ( X \ U ) -> ( ( X \ U ) C_ x <-> ( X \ U ) C_ ( X \ U ) ) ) |
|
| 6 | difss | |- ( X \ U ) C_ X |
|
| 7 | simpl1 | |- ( ( ( J e. ( TopOn ` X ) /\ U e. J /\ A e. U ) /\ A e. ( J fClus { x e. ~P X | ( X \ U ) C_ x } ) ) -> J e. ( TopOn ` X ) ) |
|
| 8 | toponmax | |- ( J e. ( TopOn ` X ) -> X e. J ) |
|
| 9 | elpw2g | |- ( X e. J -> ( ( X \ U ) e. ~P X <-> ( X \ U ) C_ X ) ) |
|
| 10 | 7 8 9 | 3syl | |- ( ( ( J e. ( TopOn ` X ) /\ U e. J /\ A e. U ) /\ A e. ( J fClus { x e. ~P X | ( X \ U ) C_ x } ) ) -> ( ( X \ U ) e. ~P X <-> ( X \ U ) C_ X ) ) |
| 11 | 6 10 | mpbiri | |- ( ( ( J e. ( TopOn ` X ) /\ U e. J /\ A e. U ) /\ A e. ( J fClus { x e. ~P X | ( X \ U ) C_ x } ) ) -> ( X \ U ) e. ~P X ) |
| 12 | ssidd | |- ( ( ( J e. ( TopOn ` X ) /\ U e. J /\ A e. U ) /\ A e. ( J fClus { x e. ~P X | ( X \ U ) C_ x } ) ) -> ( X \ U ) C_ ( X \ U ) ) |
|
| 13 | 5 11 12 | elrabd | |- ( ( ( J e. ( TopOn ` X ) /\ U e. J /\ A e. U ) /\ A e. ( J fClus { x e. ~P X | ( X \ U ) C_ x } ) ) -> ( X \ U ) e. { x e. ~P X | ( X \ U ) C_ x } ) |
| 14 | fclsopni | |- ( ( A e. ( J fClus { x e. ~P X | ( X \ U ) C_ x } ) /\ ( U e. J /\ A e. U /\ ( X \ U ) e. { x e. ~P X | ( X \ U ) C_ x } ) ) -> ( U i^i ( X \ U ) ) =/= (/) ) |
|
| 15 | 2 3 4 13 14 | syl13anc | |- ( ( ( J e. ( TopOn ` X ) /\ U e. J /\ A e. U ) /\ A e. ( J fClus { x e. ~P X | ( X \ U ) C_ x } ) ) -> ( U i^i ( X \ U ) ) =/= (/) ) |
| 16 | 15 | ex | |- ( ( J e. ( TopOn ` X ) /\ U e. J /\ A e. U ) -> ( A e. ( J fClus { x e. ~P X | ( X \ U ) C_ x } ) -> ( U i^i ( X \ U ) ) =/= (/) ) ) |
| 17 | 16 | necon2bd | |- ( ( J e. ( TopOn ` X ) /\ U e. J /\ A e. U ) -> ( ( U i^i ( X \ U ) ) = (/) -> -. A e. ( J fClus { x e. ~P X | ( X \ U ) C_ x } ) ) ) |
| 18 | 1 17 | mpi | |- ( ( J e. ( TopOn ` X ) /\ U e. J /\ A e. U ) -> -. A e. ( J fClus { x e. ~P X | ( X \ U ) C_ x } ) ) |