This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bidirectional form of suplub . (Contributed by Mario Carneiro, 6-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supmo.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| supcl.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) | ||
| suplub2.3 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) | ||
| Assertion | suplub2 | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ↔ ∃ 𝑧 ∈ 𝐵 𝐶 𝑅 𝑧 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supmo.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| 2 | supcl.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) | |
| 3 | suplub2.3 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) | |
| 4 | 1 2 | suplub | ⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐴 ∧ 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) → ∃ 𝑧 ∈ 𝐵 𝐶 𝑅 𝑧 ) ) |
| 5 | 4 | expdimp | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) → ∃ 𝑧 ∈ 𝐵 𝐶 𝑅 𝑧 ) ) |
| 6 | breq2 | ⊢ ( 𝑧 = 𝑤 → ( 𝐶 𝑅 𝑧 ↔ 𝐶 𝑅 𝑤 ) ) | |
| 7 | 6 | cbvrexvw | ⊢ ( ∃ 𝑧 ∈ 𝐵 𝐶 𝑅 𝑧 ↔ ∃ 𝑤 ∈ 𝐵 𝐶 𝑅 𝑤 ) |
| 8 | breq2 | ⊢ ( sup ( 𝐵 , 𝐴 , 𝑅 ) = 𝑤 → ( 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ↔ 𝐶 𝑅 𝑤 ) ) | |
| 9 | 8 | biimprd | ⊢ ( sup ( 𝐵 , 𝐴 , 𝑅 ) = 𝑤 → ( 𝐶 𝑅 𝑤 → 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) ) |
| 10 | 9 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → ( sup ( 𝐵 , 𝐴 , 𝑅 ) = 𝑤 → ( 𝐶 𝑅 𝑤 → 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) ) ) |
| 11 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → 𝑅 Or 𝐴 ) |
| 12 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → 𝐶 ∈ 𝐴 ) | |
| 13 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → 𝐵 ⊆ 𝐴 ) |
| 14 | 13 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → 𝑤 ∈ 𝐴 ) |
| 15 | 1 2 | supcl | ⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐴 ) |
| 16 | 15 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐴 ) |
| 17 | sotr | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐶 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ∧ sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐴 ) ) → ( ( 𝐶 𝑅 𝑤 ∧ 𝑤 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) → 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) ) | |
| 18 | 11 12 14 16 17 | syl13anc | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝐶 𝑅 𝑤 ∧ 𝑤 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) → 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) ) |
| 19 | 18 | expcomd | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → ( 𝑤 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) → ( 𝐶 𝑅 𝑤 → 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) ) ) |
| 20 | 1 2 | supub | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝐵 → ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝑤 ) ) |
| 21 | 20 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑤 ∈ 𝐵 → ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝑤 ) ) |
| 22 | 21 | imp | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝑤 ) |
| 23 | sotric | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝑤 ↔ ¬ ( sup ( 𝐵 , 𝐴 , 𝑅 ) = 𝑤 ∨ 𝑤 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) ) ) | |
| 24 | 11 16 14 23 | syl12anc | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → ( sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝑤 ↔ ¬ ( sup ( 𝐵 , 𝐴 , 𝑅 ) = 𝑤 ∨ 𝑤 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) ) ) |
| 25 | 24 | con2bid | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → ( ( sup ( 𝐵 , 𝐴 , 𝑅 ) = 𝑤 ∨ 𝑤 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) ↔ ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝑤 ) ) |
| 26 | 22 25 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → ( sup ( 𝐵 , 𝐴 , 𝑅 ) = 𝑤 ∨ 𝑤 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) ) |
| 27 | 10 19 26 | mpjaod | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → ( 𝐶 𝑅 𝑤 → 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) ) |
| 28 | 27 | rexlimdva | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( ∃ 𝑤 ∈ 𝐵 𝐶 𝑅 𝑤 → 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) ) |
| 29 | 7 28 | biimtrid | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( ∃ 𝑧 ∈ 𝐵 𝐶 𝑅 𝑧 → 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) ) |
| 30 | 5 29 | impbid | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ↔ ∃ 𝑧 ∈ 𝐵 𝐶 𝑅 𝑧 ) ) |