This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound is not less than the supremum. (Contributed by NM, 13-Oct-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supmo.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| supcl.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) | ||
| Assertion | supnub | ⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐵 ¬ 𝐶 𝑅 𝑧 ) → ¬ 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supmo.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| 2 | supcl.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) | |
| 3 | 1 2 | suplub | ⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐴 ∧ 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) → ∃ 𝑧 ∈ 𝐵 𝐶 𝑅 𝑧 ) ) |
| 4 | 3 | expdimp | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) → ∃ 𝑧 ∈ 𝐵 𝐶 𝑅 𝑧 ) ) |
| 5 | dfrex2 | ⊢ ( ∃ 𝑧 ∈ 𝐵 𝐶 𝑅 𝑧 ↔ ¬ ∀ 𝑧 ∈ 𝐵 ¬ 𝐶 𝑅 𝑧 ) | |
| 6 | 4 5 | imbitrdi | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) → ¬ ∀ 𝑧 ∈ 𝐵 ¬ 𝐶 𝑅 𝑧 ) ) |
| 7 | 6 | con2d | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ 𝐵 ¬ 𝐶 𝑅 𝑧 → ¬ 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) ) |
| 8 | 7 | expimpd | ⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐵 ¬ 𝐶 𝑅 𝑧 ) → ¬ 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) ) |