This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bidirectional form of suplub . (Contributed by Mario Carneiro, 6-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supmo.1 | |- ( ph -> R Or A ) |
|
| supcl.2 | |- ( ph -> E. x e. A ( A. y e. B -. x R y /\ A. y e. A ( y R x -> E. z e. B y R z ) ) ) |
||
| suplub2.3 | |- ( ph -> B C_ A ) |
||
| Assertion | suplub2 | |- ( ( ph /\ C e. A ) -> ( C R sup ( B , A , R ) <-> E. z e. B C R z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supmo.1 | |- ( ph -> R Or A ) |
|
| 2 | supcl.2 | |- ( ph -> E. x e. A ( A. y e. B -. x R y /\ A. y e. A ( y R x -> E. z e. B y R z ) ) ) |
|
| 3 | suplub2.3 | |- ( ph -> B C_ A ) |
|
| 4 | 1 2 | suplub | |- ( ph -> ( ( C e. A /\ C R sup ( B , A , R ) ) -> E. z e. B C R z ) ) |
| 5 | 4 | expdimp | |- ( ( ph /\ C e. A ) -> ( C R sup ( B , A , R ) -> E. z e. B C R z ) ) |
| 6 | breq2 | |- ( z = w -> ( C R z <-> C R w ) ) |
|
| 7 | 6 | cbvrexvw | |- ( E. z e. B C R z <-> E. w e. B C R w ) |
| 8 | breq2 | |- ( sup ( B , A , R ) = w -> ( C R sup ( B , A , R ) <-> C R w ) ) |
|
| 9 | 8 | biimprd | |- ( sup ( B , A , R ) = w -> ( C R w -> C R sup ( B , A , R ) ) ) |
| 10 | 9 | a1i | |- ( ( ( ph /\ C e. A ) /\ w e. B ) -> ( sup ( B , A , R ) = w -> ( C R w -> C R sup ( B , A , R ) ) ) ) |
| 11 | 1 | ad2antrr | |- ( ( ( ph /\ C e. A ) /\ w e. B ) -> R Or A ) |
| 12 | simplr | |- ( ( ( ph /\ C e. A ) /\ w e. B ) -> C e. A ) |
|
| 13 | 3 | adantr | |- ( ( ph /\ C e. A ) -> B C_ A ) |
| 14 | 13 | sselda | |- ( ( ( ph /\ C e. A ) /\ w e. B ) -> w e. A ) |
| 15 | 1 2 | supcl | |- ( ph -> sup ( B , A , R ) e. A ) |
| 16 | 15 | ad2antrr | |- ( ( ( ph /\ C e. A ) /\ w e. B ) -> sup ( B , A , R ) e. A ) |
| 17 | sotr | |- ( ( R Or A /\ ( C e. A /\ w e. A /\ sup ( B , A , R ) e. A ) ) -> ( ( C R w /\ w R sup ( B , A , R ) ) -> C R sup ( B , A , R ) ) ) |
|
| 18 | 11 12 14 16 17 | syl13anc | |- ( ( ( ph /\ C e. A ) /\ w e. B ) -> ( ( C R w /\ w R sup ( B , A , R ) ) -> C R sup ( B , A , R ) ) ) |
| 19 | 18 | expcomd | |- ( ( ( ph /\ C e. A ) /\ w e. B ) -> ( w R sup ( B , A , R ) -> ( C R w -> C R sup ( B , A , R ) ) ) ) |
| 20 | 1 2 | supub | |- ( ph -> ( w e. B -> -. sup ( B , A , R ) R w ) ) |
| 21 | 20 | adantr | |- ( ( ph /\ C e. A ) -> ( w e. B -> -. sup ( B , A , R ) R w ) ) |
| 22 | 21 | imp | |- ( ( ( ph /\ C e. A ) /\ w e. B ) -> -. sup ( B , A , R ) R w ) |
| 23 | sotric | |- ( ( R Or A /\ ( sup ( B , A , R ) e. A /\ w e. A ) ) -> ( sup ( B , A , R ) R w <-> -. ( sup ( B , A , R ) = w \/ w R sup ( B , A , R ) ) ) ) |
|
| 24 | 11 16 14 23 | syl12anc | |- ( ( ( ph /\ C e. A ) /\ w e. B ) -> ( sup ( B , A , R ) R w <-> -. ( sup ( B , A , R ) = w \/ w R sup ( B , A , R ) ) ) ) |
| 25 | 24 | con2bid | |- ( ( ( ph /\ C e. A ) /\ w e. B ) -> ( ( sup ( B , A , R ) = w \/ w R sup ( B , A , R ) ) <-> -. sup ( B , A , R ) R w ) ) |
| 26 | 22 25 | mpbird | |- ( ( ( ph /\ C e. A ) /\ w e. B ) -> ( sup ( B , A , R ) = w \/ w R sup ( B , A , R ) ) ) |
| 27 | 10 19 26 | mpjaod | |- ( ( ( ph /\ C e. A ) /\ w e. B ) -> ( C R w -> C R sup ( B , A , R ) ) ) |
| 28 | 27 | rexlimdva | |- ( ( ph /\ C e. A ) -> ( E. w e. B C R w -> C R sup ( B , A , R ) ) ) |
| 29 | 7 28 | biimtrid | |- ( ( ph /\ C e. A ) -> ( E. z e. B C R z -> C R sup ( B , A , R ) ) ) |
| 30 | 5 29 | impbid | |- ( ( ph /\ C e. A ) -> ( C R sup ( B , A , R ) <-> E. z e. B C R z ) ) |