This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for supiso . (Contributed by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supiso.1 | ⊢ ( 𝜑 → 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) | |
| supiso.2 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | ||
| Assertion | supisolem | ⊢ ( ( 𝜑 ∧ 𝐷 ∈ 𝐴 ) → ( ( ∀ 𝑦 ∈ 𝐶 ¬ 𝐷 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝐷 → ∃ 𝑧 ∈ 𝐶 𝑦 𝑅 𝑧 ) ) ↔ ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ 𝐷 ) 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ 𝐷 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supiso.1 | ⊢ ( 𝜑 → 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) | |
| 2 | supiso.2 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | |
| 3 | 1 2 | jca | ⊢ ( 𝜑 → ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ) |
| 4 | simpll | ⊢ ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) → 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) | |
| 5 | 4 | adantr | ⊢ ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐶 ) → 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |
| 6 | simplr | ⊢ ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐶 ) → 𝐷 ∈ 𝐴 ) | |
| 7 | simplr | ⊢ ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) → 𝐶 ⊆ 𝐴 ) | |
| 8 | 7 | sselda | ⊢ ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐶 ) → 𝑦 ∈ 𝐴 ) |
| 9 | isorel | ⊢ ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐷 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝐷 𝑅 𝑦 ↔ ( 𝐹 ‘ 𝐷 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) | |
| 10 | 5 6 8 9 | syl12anc | ⊢ ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐶 ) → ( 𝐷 𝑅 𝑦 ↔ ( 𝐹 ‘ 𝐷 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 11 | 10 | notbid | ⊢ ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐶 ) → ( ¬ 𝐷 𝑅 𝑦 ↔ ¬ ( 𝐹 ‘ 𝐷 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 12 | 11 | ralbidva | ⊢ ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐶 ¬ 𝐷 𝑅 𝑦 ↔ ∀ 𝑦 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝐷 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 13 | isof1o | ⊢ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 14 | 4 13 | syl | ⊢ ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
| 15 | f1ofn | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 Fn 𝐴 ) | |
| 16 | 14 15 | syl | ⊢ ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) → 𝐹 Fn 𝐴 ) |
| 17 | breq2 | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑦 ) → ( ( 𝐹 ‘ 𝐷 ) 𝑆 𝑤 ↔ ( 𝐹 ‘ 𝐷 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) | |
| 18 | 17 | notbid | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑦 ) → ( ¬ ( 𝐹 ‘ 𝐷 ) 𝑆 𝑤 ↔ ¬ ( 𝐹 ‘ 𝐷 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 19 | 18 | ralima | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴 ) → ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ 𝐷 ) 𝑆 𝑤 ↔ ∀ 𝑦 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝐷 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 20 | 16 7 19 | syl2anc | ⊢ ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) → ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ 𝐷 ) 𝑆 𝑤 ↔ ∀ 𝑦 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝐷 ) 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
| 21 | 12 20 | bitr4d | ⊢ ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐶 ¬ 𝐷 𝑅 𝑦 ↔ ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ 𝐷 ) 𝑆 𝑤 ) ) |
| 22 | 4 | adantr | ⊢ ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |
| 23 | simpr | ⊢ ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) | |
| 24 | simplr | ⊢ ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝐷 ∈ 𝐴 ) | |
| 25 | isorel | ⊢ ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑦 𝑅 𝐷 ↔ ( 𝐹 ‘ 𝑦 ) 𝑆 ( 𝐹 ‘ 𝐷 ) ) ) | |
| 26 | 22 23 24 25 | syl12anc | ⊢ ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 𝑅 𝐷 ↔ ( 𝐹 ‘ 𝑦 ) 𝑆 ( 𝐹 ‘ 𝐷 ) ) ) |
| 27 | 22 | adantr | ⊢ ( ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐶 ) → 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |
| 28 | simplr | ⊢ ( ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐶 ) → 𝑦 ∈ 𝐴 ) | |
| 29 | 7 | adantr | ⊢ ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝐶 ⊆ 𝐴 ) |
| 30 | 29 | sselda | ⊢ ( ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐶 ) → 𝑧 ∈ 𝐴 ) |
| 31 | isorel | ⊢ ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 𝑅 𝑧 ↔ ( 𝐹 ‘ 𝑦 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) | |
| 32 | 27 28 30 31 | syl12anc | ⊢ ( ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 𝑅 𝑧 ↔ ( 𝐹 ‘ 𝑦 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) |
| 33 | 32 | rexbidva | ⊢ ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ∃ 𝑧 ∈ 𝐶 𝑦 𝑅 𝑧 ↔ ∃ 𝑧 ∈ 𝐶 ( 𝐹 ‘ 𝑦 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) |
| 34 | 16 | adantr | ⊢ ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝐹 Fn 𝐴 ) |
| 35 | breq2 | ⊢ ( 𝑣 = ( 𝐹 ‘ 𝑧 ) → ( ( 𝐹 ‘ 𝑦 ) 𝑆 𝑣 ↔ ( 𝐹 ‘ 𝑦 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) | |
| 36 | 35 | rexima | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴 ) → ( ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) ( 𝐹 ‘ 𝑦 ) 𝑆 𝑣 ↔ ∃ 𝑧 ∈ 𝐶 ( 𝐹 ‘ 𝑦 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) |
| 37 | 34 29 36 | syl2anc | ⊢ ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) ( 𝐹 ‘ 𝑦 ) 𝑆 𝑣 ↔ ∃ 𝑧 ∈ 𝐶 ( 𝐹 ‘ 𝑦 ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) |
| 38 | 33 37 | bitr4d | ⊢ ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ∃ 𝑧 ∈ 𝐶 𝑦 𝑅 𝑧 ↔ ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) ( 𝐹 ‘ 𝑦 ) 𝑆 𝑣 ) ) |
| 39 | 26 38 | imbi12d | ⊢ ( ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑦 𝑅 𝐷 → ∃ 𝑧 ∈ 𝐶 𝑦 𝑅 𝑧 ) ↔ ( ( 𝐹 ‘ 𝑦 ) 𝑆 ( 𝐹 ‘ 𝐷 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) ( 𝐹 ‘ 𝑦 ) 𝑆 𝑣 ) ) ) |
| 40 | 39 | ralbidva | ⊢ ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝐷 → ∃ 𝑧 ∈ 𝐶 𝑦 𝑅 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) 𝑆 ( 𝐹 ‘ 𝐷 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) ( 𝐹 ‘ 𝑦 ) 𝑆 𝑣 ) ) ) |
| 41 | f1ofo | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 –onto→ 𝐵 ) | |
| 42 | breq1 | ⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑤 → ( ( 𝐹 ‘ 𝑦 ) 𝑆 ( 𝐹 ‘ 𝐷 ) ↔ 𝑤 𝑆 ( 𝐹 ‘ 𝐷 ) ) ) | |
| 43 | breq1 | ⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑤 → ( ( 𝐹 ‘ 𝑦 ) 𝑆 𝑣 ↔ 𝑤 𝑆 𝑣 ) ) | |
| 44 | 43 | rexbidv | ⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑤 → ( ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) ( 𝐹 ‘ 𝑦 ) 𝑆 𝑣 ↔ ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) |
| 45 | 42 44 | imbi12d | ⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑤 → ( ( ( 𝐹 ‘ 𝑦 ) 𝑆 ( 𝐹 ‘ 𝐷 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) ( 𝐹 ‘ 𝑦 ) 𝑆 𝑣 ) ↔ ( 𝑤 𝑆 ( 𝐹 ‘ 𝐷 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) |
| 46 | 45 | cbvfo | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) 𝑆 ( 𝐹 ‘ 𝐷 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) ( 𝐹 ‘ 𝑦 ) 𝑆 𝑣 ) ↔ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ 𝐷 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) |
| 47 | 14 41 46 | 3syl | ⊢ ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) 𝑆 ( 𝐹 ‘ 𝐷 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) ( 𝐹 ‘ 𝑦 ) 𝑆 𝑣 ) ↔ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ 𝐷 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) |
| 48 | 40 47 | bitrd | ⊢ ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝐷 → ∃ 𝑧 ∈ 𝐶 𝑦 𝑅 𝑧 ) ↔ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ 𝐷 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) |
| 49 | 21 48 | anbi12d | ⊢ ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) → ( ( ∀ 𝑦 ∈ 𝐶 ¬ 𝐷 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝐷 → ∃ 𝑧 ∈ 𝐶 𝑦 𝑅 𝑧 ) ) ↔ ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ 𝐷 ) 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ 𝐷 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) ) |
| 50 | 3 49 | sylan | ⊢ ( ( 𝜑 ∧ 𝐷 ∈ 𝐴 ) → ( ( ∀ 𝑦 ∈ 𝐶 ¬ 𝐷 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝐷 → ∃ 𝑧 ∈ 𝐶 𝑦 𝑅 𝑧 ) ) ↔ ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ 𝐷 ) 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ 𝐷 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) ) |