This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for supiso . (Contributed by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supiso.1 | ⊢ ( 𝜑 → 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) | |
| supiso.2 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | ||
| supisoex.3 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐶 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐶 𝑦 𝑅 𝑧 ) ) ) | ||
| Assertion | supisoex | ⊢ ( 𝜑 → ∃ 𝑢 ∈ 𝐵 ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ 𝑢 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 𝑢 → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supiso.1 | ⊢ ( 𝜑 → 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) | |
| 2 | supiso.2 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | |
| 3 | supisoex.3 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐶 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐶 𝑦 𝑅 𝑧 ) ) ) | |
| 4 | simpl | ⊢ ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) → 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) | |
| 5 | simpr | ⊢ ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) → 𝐶 ⊆ 𝐴 ) | |
| 6 | 4 5 | supisolem | ⊢ ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ∀ 𝑦 ∈ 𝐶 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐶 𝑦 𝑅 𝑧 ) ) ↔ ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ 𝑥 ) 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ 𝑥 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) ) |
| 7 | isof1o | ⊢ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 8 | f1of | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 9 | 4 7 8 | 3syl | ⊢ ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 10 | 9 | ffvelcdmda | ⊢ ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
| 11 | breq1 | ⊢ ( 𝑢 = ( 𝐹 ‘ 𝑥 ) → ( 𝑢 𝑆 𝑤 ↔ ( 𝐹 ‘ 𝑥 ) 𝑆 𝑤 ) ) | |
| 12 | 11 | notbid | ⊢ ( 𝑢 = ( 𝐹 ‘ 𝑥 ) → ( ¬ 𝑢 𝑆 𝑤 ↔ ¬ ( 𝐹 ‘ 𝑥 ) 𝑆 𝑤 ) ) |
| 13 | 12 | ralbidv | ⊢ ( 𝑢 = ( 𝐹 ‘ 𝑥 ) → ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ 𝑢 𝑆 𝑤 ↔ ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ 𝑥 ) 𝑆 𝑤 ) ) |
| 14 | breq2 | ⊢ ( 𝑢 = ( 𝐹 ‘ 𝑥 ) → ( 𝑤 𝑆 𝑢 ↔ 𝑤 𝑆 ( 𝐹 ‘ 𝑥 ) ) ) | |
| 15 | 14 | imbi1d | ⊢ ( 𝑢 = ( 𝐹 ‘ 𝑥 ) → ( ( 𝑤 𝑆 𝑢 → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ↔ ( 𝑤 𝑆 ( 𝐹 ‘ 𝑥 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) |
| 16 | 15 | ralbidv | ⊢ ( 𝑢 = ( 𝐹 ‘ 𝑥 ) → ( ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 𝑢 → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ↔ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ 𝑥 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) |
| 17 | 13 16 | anbi12d | ⊢ ( 𝑢 = ( 𝐹 ‘ 𝑥 ) → ( ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ 𝑢 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 𝑢 → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ↔ ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ 𝑥 ) 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ 𝑥 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) ) |
| 18 | 17 | rspcev | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ 𝑥 ) 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ 𝑥 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) → ∃ 𝑢 ∈ 𝐵 ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ 𝑢 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 𝑢 → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) |
| 19 | 18 | ex | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 → ( ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ 𝑥 ) 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ 𝑥 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) → ∃ 𝑢 ∈ 𝐵 ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ 𝑢 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 𝑢 → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) ) |
| 20 | 10 19 | syl | ⊢ ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ ( 𝐹 ‘ 𝑥 ) 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 ( 𝐹 ‘ 𝑥 ) → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) → ∃ 𝑢 ∈ 𝐵 ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ 𝑢 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 𝑢 → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) ) |
| 21 | 6 20 | sylbid | ⊢ ( ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ∀ 𝑦 ∈ 𝐶 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐶 𝑦 𝑅 𝑧 ) ) → ∃ 𝑢 ∈ 𝐵 ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ 𝑢 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 𝑢 → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) ) |
| 22 | 21 | rexlimdva | ⊢ ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐶 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐶 𝑦 𝑅 𝑧 ) ) → ∃ 𝑢 ∈ 𝐵 ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ 𝑢 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 𝑢 → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) ) |
| 23 | 1 2 22 | syl2anc | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐶 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐶 𝑦 𝑅 𝑧 ) ) → ∃ 𝑢 ∈ 𝐵 ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ 𝑢 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 𝑢 → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) ) |
| 24 | 3 23 | mpd | ⊢ ( 𝜑 → ∃ 𝑢 ∈ 𝐵 ( ∀ 𝑤 ∈ ( 𝐹 “ 𝐶 ) ¬ 𝑢 𝑆 𝑤 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑤 𝑆 𝑢 → ∃ 𝑣 ∈ ( 𝐹 “ 𝐶 ) 𝑤 𝑆 𝑣 ) ) ) |