This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum is the infimum of the upper bounds. (Contributed by SN, 29-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supinf.1 | ⊢ ( 𝜑 → < Or 𝐴 ) | |
| supinf.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 < 𝑧 ) ) ) | ||
| Assertion | supinf | ⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , < ) = inf ( { 𝑥 ∈ 𝐴 ∣ ∀ 𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤 } , 𝐴 , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supinf.1 | ⊢ ( 𝜑 → < Or 𝐴 ) | |
| 2 | supinf.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 < 𝑧 ) ) ) | |
| 3 | 1 2 | supcl | ⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , < ) ∈ 𝐴 ) |
| 4 | breq1 | ⊢ ( 𝑥 = sup ( 𝐵 , 𝐴 , < ) → ( 𝑥 < 𝑤 ↔ sup ( 𝐵 , 𝐴 , < ) < 𝑤 ) ) | |
| 5 | 4 | notbid | ⊢ ( 𝑥 = sup ( 𝐵 , 𝐴 , < ) → ( ¬ 𝑥 < 𝑤 ↔ ¬ sup ( 𝐵 , 𝐴 , < ) < 𝑤 ) ) |
| 6 | 5 | ralbidv | ⊢ ( 𝑥 = sup ( 𝐵 , 𝐴 , < ) → ( ∀ 𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤 ↔ ∀ 𝑤 ∈ 𝐵 ¬ sup ( 𝐵 , 𝐴 , < ) < 𝑤 ) ) |
| 7 | 1 2 | supub | ⊢ ( 𝜑 → ( 𝑣 ∈ 𝐵 → ¬ sup ( 𝐵 , 𝐴 , < ) < 𝑣 ) ) |
| 8 | 7 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑣 ∈ 𝐵 ¬ sup ( 𝐵 , 𝐴 , < ) < 𝑣 ) |
| 9 | breq2 | ⊢ ( 𝑣 = 𝑤 → ( sup ( 𝐵 , 𝐴 , < ) < 𝑣 ↔ sup ( 𝐵 , 𝐴 , < ) < 𝑤 ) ) | |
| 10 | 9 | notbid | ⊢ ( 𝑣 = 𝑤 → ( ¬ sup ( 𝐵 , 𝐴 , < ) < 𝑣 ↔ ¬ sup ( 𝐵 , 𝐴 , < ) < 𝑤 ) ) |
| 11 | 10 | cbvralvw | ⊢ ( ∀ 𝑣 ∈ 𝐵 ¬ sup ( 𝐵 , 𝐴 , < ) < 𝑣 ↔ ∀ 𝑤 ∈ 𝐵 ¬ sup ( 𝐵 , 𝐴 , < ) < 𝑤 ) |
| 12 | 8 11 | sylib | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ¬ sup ( 𝐵 , 𝐴 , < ) < 𝑤 ) |
| 13 | 6 3 12 | elrabd | ⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , < ) ∈ { 𝑥 ∈ 𝐴 ∣ ∀ 𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤 } ) |
| 14 | breq1 | ⊢ ( 𝑥 = 𝑣 → ( 𝑥 < 𝑤 ↔ 𝑣 < 𝑤 ) ) | |
| 15 | 14 | notbid | ⊢ ( 𝑥 = 𝑣 → ( ¬ 𝑥 < 𝑤 ↔ ¬ 𝑣 < 𝑤 ) ) |
| 16 | 15 | ralbidv | ⊢ ( 𝑥 = 𝑣 → ( ∀ 𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤 ↔ ∀ 𝑤 ∈ 𝐵 ¬ 𝑣 < 𝑤 ) ) |
| 17 | 16 | elrab | ⊢ ( 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ ∀ 𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤 } ↔ ( 𝑣 ∈ 𝐴 ∧ ∀ 𝑤 ∈ 𝐵 ¬ 𝑣 < 𝑤 ) ) |
| 18 | breq2 | ⊢ ( 𝑧 = 𝑤 → ( 𝑦 < 𝑧 ↔ 𝑦 < 𝑤 ) ) | |
| 19 | 18 | cbvrexvw | ⊢ ( ∃ 𝑧 ∈ 𝐵 𝑦 < 𝑧 ↔ ∃ 𝑤 ∈ 𝐵 𝑦 < 𝑤 ) |
| 20 | 19 | imbi2i | ⊢ ( ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 < 𝑧 ) ↔ ( 𝑦 < 𝑥 → ∃ 𝑤 ∈ 𝐵 𝑦 < 𝑤 ) ) |
| 21 | 20 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 < 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 → ∃ 𝑤 ∈ 𝐵 𝑦 < 𝑤 ) ) |
| 22 | 21 | anbi2i | ⊢ ( ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 < 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 → ∃ 𝑤 ∈ 𝐵 𝑦 < 𝑤 ) ) ) |
| 23 | 22 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 < 𝑧 ) ) ↔ ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 → ∃ 𝑤 ∈ 𝐵 𝑦 < 𝑤 ) ) ) |
| 24 | 2 23 | sylib | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 → ∃ 𝑤 ∈ 𝐵 𝑦 < 𝑤 ) ) ) |
| 25 | 1 24 | supnub | ⊢ ( 𝜑 → ( ( 𝑣 ∈ 𝐴 ∧ ∀ 𝑤 ∈ 𝐵 ¬ 𝑣 < 𝑤 ) → ¬ 𝑣 < sup ( 𝐵 , 𝐴 , < ) ) ) |
| 26 | 17 25 | biimtrid | ⊢ ( 𝜑 → ( 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ ∀ 𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤 } → ¬ 𝑣 < sup ( 𝐵 , 𝐴 , < ) ) ) |
| 27 | 26 | imp | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ { 𝑥 ∈ 𝐴 ∣ ∀ 𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤 } ) → ¬ 𝑣 < sup ( 𝐵 , 𝐴 , < ) ) |
| 28 | 1 3 13 27 | infmin | ⊢ ( 𝜑 → inf ( { 𝑥 ∈ 𝐴 ∣ ∀ 𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤 } , 𝐴 , < ) = sup ( 𝐵 , 𝐴 , < ) ) |
| 29 | 28 | eqcomd | ⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , < ) = inf ( { 𝑥 ∈ 𝐴 ∣ ∀ 𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤 } , 𝐴 , < ) ) |