This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Compose two mappings. (Contributed by SN, 11-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mapcod.1 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 ↑m 𝐵 ) ) | |
| mapcod.2 | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝐵 ↑m 𝐶 ) ) | ||
| Assertion | mapcod | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝐴 ↑m 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapcod.1 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 ↑m 𝐵 ) ) | |
| 2 | mapcod.2 | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝐵 ↑m 𝐶 ) ) | |
| 3 | elmapex | ⊢ ( 𝐹 ∈ ( 𝐴 ↑m 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) | |
| 4 | 1 3 | syl | ⊢ ( 𝜑 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| 5 | 4 | simpld | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 6 | elmapex | ⊢ ( 𝐺 ∈ ( 𝐵 ↑m 𝐶 ) → ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) | |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) |
| 8 | 7 | simprd | ⊢ ( 𝜑 → 𝐶 ∈ V ) |
| 9 | elmapi | ⊢ ( 𝐹 ∈ ( 𝐴 ↑m 𝐵 ) → 𝐹 : 𝐵 ⟶ 𝐴 ) | |
| 10 | 1 9 | syl | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 11 | elmapi | ⊢ ( 𝐺 ∈ ( 𝐵 ↑m 𝐶 ) → 𝐺 : 𝐶 ⟶ 𝐵 ) | |
| 12 | 2 11 | syl | ⊢ ( 𝜑 → 𝐺 : 𝐶 ⟶ 𝐵 ) |
| 13 | 10 12 | fcod | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) : 𝐶 ⟶ 𝐴 ) |
| 14 | 5 8 13 | elmapdd | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝐴 ↑m 𝐶 ) ) |