This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a bounded set of real numbers is the least upper bound. (Contributed by Thierry Arnoux, 23-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supicc.1 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| supicc.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| supicc.3 | ⊢ ( 𝜑 → 𝐴 ⊆ ( 𝐵 [,] 𝐶 ) ) | ||
| supicc.4 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | ||
| supiccub.1 | ⊢ ( 𝜑 → 𝐷 ∈ 𝐴 ) | ||
| supicclub2.1 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ≤ 𝐷 ) | ||
| Assertion | supicclub2 | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ , < ) ≤ 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supicc.1 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 2 | supicc.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 3 | supicc.3 | ⊢ ( 𝜑 → 𝐴 ⊆ ( 𝐵 [,] 𝐶 ) ) | |
| 4 | supicc.4 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | |
| 5 | supiccub.1 | ⊢ ( 𝜑 → 𝐷 ∈ 𝐴 ) | |
| 6 | supicclub2.1 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ≤ 𝐷 ) | |
| 7 | iccssxr | ⊢ ( 𝐵 [,] 𝐶 ) ⊆ ℝ* | |
| 8 | 1 2 3 4 | supicc | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ , < ) ∈ ( 𝐵 [,] 𝐶 ) ) |
| 9 | 7 8 | sselid | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ , < ) ∈ ℝ* ) |
| 10 | 3 7 | sstrdi | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ* ) |
| 11 | 10 5 | sseldd | ⊢ ( 𝜑 → 𝐷 ∈ ℝ* ) |
| 12 | 10 | sselda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ ℝ* ) |
| 13 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝐷 ∈ ℝ* ) |
| 14 | 12 13 | xrlenltd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑧 ≤ 𝐷 ↔ ¬ 𝐷 < 𝑧 ) ) |
| 15 | 6 14 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ¬ 𝐷 < 𝑧 ) |
| 16 | 15 | nrexdv | ⊢ ( 𝜑 → ¬ ∃ 𝑧 ∈ 𝐴 𝐷 < 𝑧 ) |
| 17 | 1 2 3 4 5 | supicclub | ⊢ ( 𝜑 → ( 𝐷 < sup ( 𝐴 , ℝ , < ) ↔ ∃ 𝑧 ∈ 𝐴 𝐷 < 𝑧 ) ) |
| 18 | 16 17 | mtbird | ⊢ ( 𝜑 → ¬ 𝐷 < sup ( 𝐴 , ℝ , < ) ) |
| 19 | 9 11 18 | xrnltled | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ , < ) ≤ 𝐷 ) |