This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a bounded set of real numbers is the least upper bound. (Contributed by Thierry Arnoux, 23-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supicc.1 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| supicc.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| supicc.3 | ⊢ ( 𝜑 → 𝐴 ⊆ ( 𝐵 [,] 𝐶 ) ) | ||
| supicc.4 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | ||
| supiccub.1 | ⊢ ( 𝜑 → 𝐷 ∈ 𝐴 ) | ||
| Assertion | supicclub | ⊢ ( 𝜑 → ( 𝐷 < sup ( 𝐴 , ℝ , < ) ↔ ∃ 𝑧 ∈ 𝐴 𝐷 < 𝑧 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supicc.1 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 2 | supicc.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 3 | supicc.3 | ⊢ ( 𝜑 → 𝐴 ⊆ ( 𝐵 [,] 𝐶 ) ) | |
| 4 | supicc.4 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | |
| 5 | supiccub.1 | ⊢ ( 𝜑 → 𝐷 ∈ 𝐴 ) | |
| 6 | iccssre | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 [,] 𝐶 ) ⊆ ℝ ) | |
| 7 | 1 2 6 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 [,] 𝐶 ) ⊆ ℝ ) |
| 8 | 3 7 | sstrd | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 9 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 10 | 9 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ* ) |
| 11 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
| 12 | 11 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ* ) |
| 13 | 3 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) |
| 14 | iccleub | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) → 𝑥 ≤ 𝐶 ) | |
| 15 | 10 12 13 14 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≤ 𝐶 ) |
| 16 | 15 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝐶 ) |
| 17 | brralrspcev | ⊢ ( ( 𝐶 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝐶 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑦 ) | |
| 18 | 2 16 17 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
| 19 | 8 5 | sseldd | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 20 | suprlub | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝐷 ∈ ℝ ) → ( 𝐷 < sup ( 𝐴 , ℝ , < ) ↔ ∃ 𝑧 ∈ 𝐴 𝐷 < 𝑧 ) ) | |
| 21 | 8 4 18 19 20 | syl31anc | ⊢ ( 𝜑 → ( 𝐷 < sup ( 𝐴 , ℝ , < ) ↔ ∃ 𝑧 ∈ 𝐴 𝐷 < 𝑧 ) ) |