This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a bounded set of real numbers is the least upper bound. (Contributed by Thierry Arnoux, 23-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supicc.1 | |- ( ph -> B e. RR ) |
|
| supicc.2 | |- ( ph -> C e. RR ) |
||
| supicc.3 | |- ( ph -> A C_ ( B [,] C ) ) |
||
| supicc.4 | |- ( ph -> A =/= (/) ) |
||
| supiccub.1 | |- ( ph -> D e. A ) |
||
| supicclub2.1 | |- ( ( ph /\ z e. A ) -> z <_ D ) |
||
| Assertion | supicclub2 | |- ( ph -> sup ( A , RR , < ) <_ D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supicc.1 | |- ( ph -> B e. RR ) |
|
| 2 | supicc.2 | |- ( ph -> C e. RR ) |
|
| 3 | supicc.3 | |- ( ph -> A C_ ( B [,] C ) ) |
|
| 4 | supicc.4 | |- ( ph -> A =/= (/) ) |
|
| 5 | supiccub.1 | |- ( ph -> D e. A ) |
|
| 6 | supicclub2.1 | |- ( ( ph /\ z e. A ) -> z <_ D ) |
|
| 7 | iccssxr | |- ( B [,] C ) C_ RR* |
|
| 8 | 1 2 3 4 | supicc | |- ( ph -> sup ( A , RR , < ) e. ( B [,] C ) ) |
| 9 | 7 8 | sselid | |- ( ph -> sup ( A , RR , < ) e. RR* ) |
| 10 | 3 7 | sstrdi | |- ( ph -> A C_ RR* ) |
| 11 | 10 5 | sseldd | |- ( ph -> D e. RR* ) |
| 12 | 10 | sselda | |- ( ( ph /\ z e. A ) -> z e. RR* ) |
| 13 | 11 | adantr | |- ( ( ph /\ z e. A ) -> D e. RR* ) |
| 14 | 12 13 | xrlenltd | |- ( ( ph /\ z e. A ) -> ( z <_ D <-> -. D < z ) ) |
| 15 | 6 14 | mpbid | |- ( ( ph /\ z e. A ) -> -. D < z ) |
| 16 | 15 | nrexdv | |- ( ph -> -. E. z e. A D < z ) |
| 17 | 1 2 3 4 5 | supicclub | |- ( ph -> ( D < sup ( A , RR , < ) <-> E. z e. A D < z ) ) |
| 18 | 16 17 | mtbird | |- ( ph -> -. D < sup ( A , RR , < ) ) |
| 19 | 9 11 18 | xrnltled | |- ( ph -> sup ( A , RR , < ) <_ D ) |