This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for supremum. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supeq2 | ⊢ ( 𝐵 = 𝐶 → sup ( 𝐴 , 𝐵 , 𝑅 ) = sup ( 𝐴 , 𝐶 , 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq | ⊢ ( 𝐵 = 𝐶 → { 𝑥 ∈ 𝐵 ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) } = { 𝑥 ∈ 𝐶 ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) } ) | |
| 2 | raleq | ⊢ ( 𝐵 = 𝐶 → ( ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐶 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) ) | |
| 3 | 2 | anbi2d | ⊢ ( 𝐵 = 𝐶 → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐶 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) ) ) |
| 4 | 3 | rabbidv | ⊢ ( 𝐵 = 𝐶 → { 𝑥 ∈ 𝐶 ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) } = { 𝑥 ∈ 𝐶 ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐶 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) } ) |
| 5 | 1 4 | eqtrd | ⊢ ( 𝐵 = 𝐶 → { 𝑥 ∈ 𝐵 ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) } = { 𝑥 ∈ 𝐶 ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐶 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) } ) |
| 6 | 5 | unieqd | ⊢ ( 𝐵 = 𝐶 → ∪ { 𝑥 ∈ 𝐵 ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) } = ∪ { 𝑥 ∈ 𝐶 ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐶 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) } ) |
| 7 | df-sup | ⊢ sup ( 𝐴 , 𝐵 , 𝑅 ) = ∪ { 𝑥 ∈ 𝐵 ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) } | |
| 8 | df-sup | ⊢ sup ( 𝐴 , 𝐶 , 𝑅 ) = ∪ { 𝑥 ∈ 𝐶 ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐶 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) } | |
| 9 | 6 7 8 | 3eqtr4g | ⊢ ( 𝐵 = 𝐶 → sup ( 𝐴 , 𝐵 , 𝑅 ) = sup ( 𝐴 , 𝐶 , 𝑅 ) ) |