This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for supremum. (Contributed by Scott Fenton, 13-Jun-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supeq3 | ⊢ ( 𝑅 = 𝑆 → sup ( 𝐴 , 𝐵 , 𝑅 ) = sup ( 𝐴 , 𝐵 , 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq | ⊢ ( 𝑅 = 𝑆 → ( 𝑥 𝑅 𝑦 ↔ 𝑥 𝑆 𝑦 ) ) | |
| 2 | 1 | notbid | ⊢ ( 𝑅 = 𝑆 → ( ¬ 𝑥 𝑅 𝑦 ↔ ¬ 𝑥 𝑆 𝑦 ) ) |
| 3 | 2 | ralbidv | ⊢ ( 𝑅 = 𝑆 → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑆 𝑦 ) ) |
| 4 | breq | ⊢ ( 𝑅 = 𝑆 → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑆 𝑥 ) ) | |
| 5 | breq | ⊢ ( 𝑅 = 𝑆 → ( 𝑦 𝑅 𝑧 ↔ 𝑦 𝑆 𝑧 ) ) | |
| 6 | 5 | rexbidv | ⊢ ( 𝑅 = 𝑆 → ( ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ↔ ∃ 𝑧 ∈ 𝐴 𝑦 𝑆 𝑧 ) ) |
| 7 | 4 6 | imbi12d | ⊢ ( 𝑅 = 𝑆 → ( ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ↔ ( 𝑦 𝑆 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑆 𝑧 ) ) ) |
| 8 | 7 | ralbidv | ⊢ ( 𝑅 = 𝑆 → ( ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑆 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑆 𝑧 ) ) ) |
| 9 | 3 8 | anbi12d | ⊢ ( 𝑅 = 𝑆 → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑆 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑆 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑆 𝑧 ) ) ) ) |
| 10 | 9 | rabbidv | ⊢ ( 𝑅 = 𝑆 → { 𝑥 ∈ 𝐵 ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) } = { 𝑥 ∈ 𝐵 ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑆 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑆 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑆 𝑧 ) ) } ) |
| 11 | 10 | unieqd | ⊢ ( 𝑅 = 𝑆 → ∪ { 𝑥 ∈ 𝐵 ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) } = ∪ { 𝑥 ∈ 𝐵 ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑆 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑆 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑆 𝑧 ) ) } ) |
| 12 | df-sup | ⊢ sup ( 𝐴 , 𝐵 , 𝑅 ) = ∪ { 𝑥 ∈ 𝐵 ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) } | |
| 13 | df-sup | ⊢ sup ( 𝐴 , 𝐵 , 𝑆 ) = ∪ { 𝑥 ∈ 𝐵 ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑆 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑆 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑆 𝑧 ) ) } | |
| 14 | 11 12 13 | 3eqtr4g | ⊢ ( 𝑅 = 𝑆 → sup ( 𝐴 , 𝐵 , 𝑅 ) = sup ( 𝐴 , 𝐵 , 𝑆 ) ) |