This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality deduction for supremum. (Contributed by Stefan O'Rear, 20-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supeq123d.a | ⊢ ( 𝜑 → 𝐴 = 𝐷 ) | |
| supeq123d.b | ⊢ ( 𝜑 → 𝐵 = 𝐸 ) | ||
| supeq123d.c | ⊢ ( 𝜑 → 𝐶 = 𝐹 ) | ||
| Assertion | supeq123d | ⊢ ( 𝜑 → sup ( 𝐴 , 𝐵 , 𝐶 ) = sup ( 𝐷 , 𝐸 , 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supeq123d.a | ⊢ ( 𝜑 → 𝐴 = 𝐷 ) | |
| 2 | supeq123d.b | ⊢ ( 𝜑 → 𝐵 = 𝐸 ) | |
| 3 | supeq123d.c | ⊢ ( 𝜑 → 𝐶 = 𝐹 ) | |
| 4 | 3 | breqd | ⊢ ( 𝜑 → ( 𝑥 𝐶 𝑦 ↔ 𝑥 𝐹 𝑦 ) ) |
| 5 | 4 | notbid | ⊢ ( 𝜑 → ( ¬ 𝑥 𝐶 𝑦 ↔ ¬ 𝑥 𝐹 𝑦 ) ) |
| 6 | 1 5 | raleqbidv | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝐶 𝑦 ↔ ∀ 𝑦 ∈ 𝐷 ¬ 𝑥 𝐹 𝑦 ) ) |
| 7 | 3 | breqd | ⊢ ( 𝜑 → ( 𝑦 𝐶 𝑥 ↔ 𝑦 𝐹 𝑥 ) ) |
| 8 | 3 | breqd | ⊢ ( 𝜑 → ( 𝑦 𝐶 𝑧 ↔ 𝑦 𝐹 𝑧 ) ) |
| 9 | 1 8 | rexeqbidv | ⊢ ( 𝜑 → ( ∃ 𝑧 ∈ 𝐴 𝑦 𝐶 𝑧 ↔ ∃ 𝑧 ∈ 𝐷 𝑦 𝐹 𝑧 ) ) |
| 10 | 7 9 | imbi12d | ⊢ ( 𝜑 → ( ( 𝑦 𝐶 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝐶 𝑧 ) ↔ ( 𝑦 𝐹 𝑥 → ∃ 𝑧 ∈ 𝐷 𝑦 𝐹 𝑧 ) ) ) |
| 11 | 2 10 | raleqbidv | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝐶 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝐶 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐸 ( 𝑦 𝐹 𝑥 → ∃ 𝑧 ∈ 𝐷 𝑦 𝐹 𝑧 ) ) ) |
| 12 | 6 11 | anbi12d | ⊢ ( 𝜑 → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝐶 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝐶 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝐶 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝐷 ¬ 𝑥 𝐹 𝑦 ∧ ∀ 𝑦 ∈ 𝐸 ( 𝑦 𝐹 𝑥 → ∃ 𝑧 ∈ 𝐷 𝑦 𝐹 𝑧 ) ) ) ) |
| 13 | 2 12 | rabeqbidv | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐵 ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝐶 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝐶 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝐶 𝑧 ) ) } = { 𝑥 ∈ 𝐸 ∣ ( ∀ 𝑦 ∈ 𝐷 ¬ 𝑥 𝐹 𝑦 ∧ ∀ 𝑦 ∈ 𝐸 ( 𝑦 𝐹 𝑥 → ∃ 𝑧 ∈ 𝐷 𝑦 𝐹 𝑧 ) ) } ) |
| 14 | 13 | unieqd | ⊢ ( 𝜑 → ∪ { 𝑥 ∈ 𝐵 ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝐶 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝐶 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝐶 𝑧 ) ) } = ∪ { 𝑥 ∈ 𝐸 ∣ ( ∀ 𝑦 ∈ 𝐷 ¬ 𝑥 𝐹 𝑦 ∧ ∀ 𝑦 ∈ 𝐸 ( 𝑦 𝐹 𝑥 → ∃ 𝑧 ∈ 𝐷 𝑦 𝐹 𝑧 ) ) } ) |
| 15 | df-sup | ⊢ sup ( 𝐴 , 𝐵 , 𝐶 ) = ∪ { 𝑥 ∈ 𝐵 ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝐶 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝐶 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝐶 𝑧 ) ) } | |
| 16 | df-sup | ⊢ sup ( 𝐷 , 𝐸 , 𝐹 ) = ∪ { 𝑥 ∈ 𝐸 ∣ ( ∀ 𝑦 ∈ 𝐷 ¬ 𝑥 𝐹 𝑦 ∧ ∀ 𝑦 ∈ 𝐸 ( 𝑦 𝐹 𝑥 → ∃ 𝑧 ∈ 𝐷 𝑦 𝐹 𝑧 ) ) } | |
| 17 | 14 15 16 | 3eqtr4g | ⊢ ( 𝜑 → sup ( 𝐴 , 𝐵 , 𝐶 ) = sup ( 𝐷 , 𝐸 , 𝐹 ) ) |