This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sum over a triple is the sum of the elements. (Contributed by AV, 24-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sumtp.e | ⊢ ( 𝑘 = 𝐴 → 𝐷 = 𝐸 ) | |
| sumtp.f | ⊢ ( 𝑘 = 𝐵 → 𝐷 = 𝐹 ) | ||
| sumtp.g | ⊢ ( 𝑘 = 𝐶 → 𝐷 = 𝐺 ) | ||
| sumtp.c | ⊢ ( 𝜑 → ( 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ ) ) | ||
| sumtp.v | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ) | ||
| sumtp.1 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | ||
| sumtp.2 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐶 ) | ||
| sumtp.3 | ⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) | ||
| Assertion | sumtp | ⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝐷 = ( ( 𝐸 + 𝐹 ) + 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumtp.e | ⊢ ( 𝑘 = 𝐴 → 𝐷 = 𝐸 ) | |
| 2 | sumtp.f | ⊢ ( 𝑘 = 𝐵 → 𝐷 = 𝐹 ) | |
| 3 | sumtp.g | ⊢ ( 𝑘 = 𝐶 → 𝐷 = 𝐺 ) | |
| 4 | sumtp.c | ⊢ ( 𝜑 → ( 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ ) ) | |
| 5 | sumtp.v | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ) | |
| 6 | sumtp.1 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | |
| 7 | sumtp.2 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐶 ) | |
| 8 | sumtp.3 | ⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) | |
| 9 | 7 | necomd | ⊢ ( 𝜑 → 𝐶 ≠ 𝐴 ) |
| 10 | 8 | necomd | ⊢ ( 𝜑 → 𝐶 ≠ 𝐵 ) |
| 11 | 9 10 | nelprd | ⊢ ( 𝜑 → ¬ 𝐶 ∈ { 𝐴 , 𝐵 } ) |
| 12 | disjsn | ⊢ ( ( { 𝐴 , 𝐵 } ∩ { 𝐶 } ) = ∅ ↔ ¬ 𝐶 ∈ { 𝐴 , 𝐵 } ) | |
| 13 | 11 12 | sylibr | ⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ∩ { 𝐶 } ) = ∅ ) |
| 14 | df-tp | ⊢ { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) | |
| 15 | 14 | a1i | ⊢ ( 𝜑 → { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ) |
| 16 | tpfi | ⊢ { 𝐴 , 𝐵 , 𝐶 } ∈ Fin | |
| 17 | 16 | a1i | ⊢ ( 𝜑 → { 𝐴 , 𝐵 , 𝐶 } ∈ Fin ) |
| 18 | 1 | eleq1d | ⊢ ( 𝑘 = 𝐴 → ( 𝐷 ∈ ℂ ↔ 𝐸 ∈ ℂ ) ) |
| 19 | 2 | eleq1d | ⊢ ( 𝑘 = 𝐵 → ( 𝐷 ∈ ℂ ↔ 𝐹 ∈ ℂ ) ) |
| 20 | 3 | eleq1d | ⊢ ( 𝑘 = 𝐶 → ( 𝐷 ∈ ℂ ↔ 𝐺 ∈ ℂ ) ) |
| 21 | 18 19 20 | raltpg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ∀ 𝑘 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝐷 ∈ ℂ ↔ ( 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ ) ) ) |
| 22 | 5 21 | syl | ⊢ ( 𝜑 → ( ∀ 𝑘 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝐷 ∈ ℂ ↔ ( 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ ) ) ) |
| 23 | 4 22 | mpbird | ⊢ ( 𝜑 → ∀ 𝑘 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝐷 ∈ ℂ ) |
| 24 | 23 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝐴 , 𝐵 , 𝐶 } ) → 𝐷 ∈ ℂ ) |
| 25 | 13 15 17 24 | fsumsplit | ⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝐷 = ( Σ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐷 + Σ 𝑘 ∈ { 𝐶 } 𝐷 ) ) |
| 26 | 3simpa | ⊢ ( ( 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ ) → ( 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ) ) | |
| 27 | 4 26 | syl | ⊢ ( 𝜑 → ( 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ) ) |
| 28 | 3simpa | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) | |
| 29 | 5 28 | syl | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) |
| 30 | 1 2 27 29 6 | sumpr | ⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐷 = ( 𝐸 + 𝐹 ) ) |
| 31 | 5 | simp3d | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) |
| 32 | 4 | simp3d | ⊢ ( 𝜑 → 𝐺 ∈ ℂ ) |
| 33 | 3 | sumsn | ⊢ ( ( 𝐶 ∈ 𝑋 ∧ 𝐺 ∈ ℂ ) → Σ 𝑘 ∈ { 𝐶 } 𝐷 = 𝐺 ) |
| 34 | 31 32 33 | syl2anc | ⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐶 } 𝐷 = 𝐺 ) |
| 35 | 30 34 | oveq12d | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐷 + Σ 𝑘 ∈ { 𝐶 } 𝐷 ) = ( ( 𝐸 + 𝐹 ) + 𝐺 ) ) |
| 36 | 25 35 | eqtrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝐷 = ( ( 𝐸 + 𝐹 ) + 𝐺 ) ) |