This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013) (Revised by Mario Carneiro, 23-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sumsplit.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| sumsplit.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| sumsplit.3 | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = ∅ ) | ||
| sumsplit.4 | ⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) ⊆ 𝑍 ) | ||
| sumsplit.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) | ||
| sumsplit.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) | ||
| sumsplit.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ) → 𝐶 ∈ ℂ ) | ||
| sumsplit.8 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | ||
| sumsplit.9 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ∈ dom ⇝ ) | ||
| Assertion | sumsplit | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) 𝐶 = ( Σ 𝑘 ∈ 𝐴 𝐶 + Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumsplit.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | sumsplit.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | sumsplit.3 | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = ∅ ) | |
| 4 | sumsplit.4 | ⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) ⊆ 𝑍 ) | |
| 5 | sumsplit.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) | |
| 6 | sumsplit.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) | |
| 7 | sumsplit.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ) → 𝐶 ∈ ℂ ) | |
| 8 | sumsplit.8 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | |
| 9 | sumsplit.9 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ∈ dom ⇝ ) | |
| 10 | 7 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) 𝐶 ∈ ℂ ) |
| 11 | 1 | eqimssi | ⊢ 𝑍 ⊆ ( ℤ≥ ‘ 𝑀 ) |
| 12 | 11 | a1i | ⊢ ( 𝜑 → 𝑍 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 13 | 12 | orcd | ⊢ ( 𝜑 → ( 𝑍 ⊆ ( ℤ≥ ‘ 𝑀 ) ∨ 𝑍 ∈ Fin ) ) |
| 14 | sumss2 | ⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ 𝑍 ∧ ∀ 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) 𝐶 ∈ ℂ ) ∧ ( 𝑍 ⊆ ( ℤ≥ ‘ 𝑀 ) ∨ 𝑍 ∈ Fin ) ) → Σ 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) 𝐶 = Σ 𝑘 ∈ 𝑍 if ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) , 𝐶 , 0 ) ) | |
| 15 | 4 10 13 14 | syl21anc | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) 𝐶 = Σ 𝑘 ∈ 𝑍 if ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) , 𝐶 , 0 ) ) |
| 16 | iftrue | ⊢ ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) = 𝐶 ) | |
| 17 | 16 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) = 𝐶 ) |
| 18 | elun1 | ⊢ ( 𝑘 ∈ 𝐴 → 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ) | |
| 19 | 18 7 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 20 | 17 19 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ∈ ℂ ) |
| 21 | iffalse | ⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) = 0 ) | |
| 22 | 0cn | ⊢ 0 ∈ ℂ | |
| 23 | 21 22 | eqeltrdi | ⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ∈ ℂ ) |
| 24 | 23 | adantl | ⊢ ( ( 𝜑 ∧ ¬ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ∈ ℂ ) |
| 25 | 20 24 | pm2.61dan | ⊢ ( 𝜑 → if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ∈ ℂ ) |
| 26 | 25 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ∈ ℂ ) |
| 27 | iftrue | ⊢ ( 𝑘 ∈ 𝐵 → if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) = 𝐶 ) | |
| 28 | 27 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) = 𝐶 ) |
| 29 | elun2 | ⊢ ( 𝑘 ∈ 𝐵 → 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ) | |
| 30 | 29 7 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
| 31 | 28 30 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ∈ ℂ ) |
| 32 | iffalse | ⊢ ( ¬ 𝑘 ∈ 𝐵 → if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) = 0 ) | |
| 33 | 32 22 | eqeltrdi | ⊢ ( ¬ 𝑘 ∈ 𝐵 → if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ∈ ℂ ) |
| 34 | 33 | adantl | ⊢ ( ( 𝜑 ∧ ¬ 𝑘 ∈ 𝐵 ) → if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ∈ ℂ ) |
| 35 | 31 34 | pm2.61dan | ⊢ ( 𝜑 → if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ∈ ℂ ) |
| 36 | 35 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ∈ ℂ ) |
| 37 | 1 2 5 26 6 36 8 9 | isumadd | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 ( if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) + if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) = ( Σ 𝑘 ∈ 𝑍 if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) + Σ 𝑘 ∈ 𝑍 if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) ) |
| 38 | 19 | addridd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐶 + 0 ) = 𝐶 ) |
| 39 | noel | ⊢ ¬ 𝑘 ∈ ∅ | |
| 40 | 3 | eleq2d | ⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐴 ∩ 𝐵 ) ↔ 𝑘 ∈ ∅ ) ) |
| 41 | elin | ⊢ ( 𝑘 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑘 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) | |
| 42 | 40 41 | bitr3di | ⊢ ( 𝜑 → ( 𝑘 ∈ ∅ ↔ ( 𝑘 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) ) |
| 43 | 39 42 | mtbii | ⊢ ( 𝜑 → ¬ ( 𝑘 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) |
| 44 | imnan | ⊢ ( ( 𝑘 ∈ 𝐴 → ¬ 𝑘 ∈ 𝐵 ) ↔ ¬ ( 𝑘 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) | |
| 45 | 43 44 | sylibr | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → ¬ 𝑘 ∈ 𝐵 ) ) |
| 46 | 45 | imp | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ¬ 𝑘 ∈ 𝐵 ) |
| 47 | 46 32 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) = 0 ) |
| 48 | 17 47 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) + if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) = ( 𝐶 + 0 ) ) |
| 49 | iftrue | ⊢ ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) → if ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) , 𝐶 , 0 ) = 𝐶 ) | |
| 50 | 18 49 | syl | ⊢ ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) , 𝐶 , 0 ) = 𝐶 ) |
| 51 | 50 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) , 𝐶 , 0 ) = 𝐶 ) |
| 52 | 38 48 51 | 3eqtr4rd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) , 𝐶 , 0 ) = ( if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) + if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) ) |
| 53 | 35 | addlidd | ⊢ ( 𝜑 → ( 0 + if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) = if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 54 | 53 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝑘 ∈ 𝐴 ) → ( 0 + if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) = if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 55 | 21 | adantl | ⊢ ( ( 𝜑 ∧ ¬ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) = 0 ) |
| 56 | 55 | oveq1d | ⊢ ( ( 𝜑 ∧ ¬ 𝑘 ∈ 𝐴 ) → ( if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) + if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) = ( 0 + if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) ) |
| 57 | elun | ⊢ ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵 ) ) | |
| 58 | biorf | ⊢ ( ¬ 𝑘 ∈ 𝐴 → ( 𝑘 ∈ 𝐵 ↔ ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵 ) ) ) | |
| 59 | 57 58 | bitr4id | ⊢ ( ¬ 𝑘 ∈ 𝐴 → ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ↔ 𝑘 ∈ 𝐵 ) ) |
| 60 | 59 | adantl | ⊢ ( ( 𝜑 ∧ ¬ 𝑘 ∈ 𝐴 ) → ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ↔ 𝑘 ∈ 𝐵 ) ) |
| 61 | 60 | ifbid | ⊢ ( ( 𝜑 ∧ ¬ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) , 𝐶 , 0 ) = if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 62 | 54 56 61 | 3eqtr4rd | ⊢ ( ( 𝜑 ∧ ¬ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) , 𝐶 , 0 ) = ( if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) + if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) ) |
| 63 | 52 62 | pm2.61dan | ⊢ ( 𝜑 → if ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) , 𝐶 , 0 ) = ( if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) + if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) ) |
| 64 | 63 | sumeq2sdv | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 if ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) , 𝐶 , 0 ) = Σ 𝑘 ∈ 𝑍 ( if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) + if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) ) |
| 65 | 4 | unssad | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑍 ) |
| 66 | 19 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ℂ ) |
| 67 | sumss2 | ⊢ ( ( ( 𝐴 ⊆ 𝑍 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ℂ ) ∧ ( 𝑍 ⊆ ( ℤ≥ ‘ 𝑀 ) ∨ 𝑍 ∈ Fin ) ) → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝑍 if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) | |
| 68 | 65 66 13 67 | syl21anc | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝑍 if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) |
| 69 | 4 | unssbd | ⊢ ( 𝜑 → 𝐵 ⊆ 𝑍 ) |
| 70 | 30 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ ) |
| 71 | sumss2 | ⊢ ( ( ( 𝐵 ⊆ 𝑍 ∧ ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ ) ∧ ( 𝑍 ⊆ ( ℤ≥ ‘ 𝑀 ) ∨ 𝑍 ∈ Fin ) ) → Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑘 ∈ 𝑍 if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) | |
| 72 | 69 70 13 71 | syl21anc | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑘 ∈ 𝑍 if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 73 | 68 72 | oveq12d | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐶 + Σ 𝑘 ∈ 𝐵 𝐶 ) = ( Σ 𝑘 ∈ 𝑍 if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) + Σ 𝑘 ∈ 𝑍 if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) ) |
| 74 | 37 64 73 | 3eqtr4rd | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐶 + Σ 𝑘 ∈ 𝐵 𝐶 ) = Σ 𝑘 ∈ 𝑍 if ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) , 𝐶 , 0 ) ) |
| 75 | 15 74 | eqtr4d | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) 𝐶 = ( Σ 𝑘 ∈ 𝐴 𝐶 + Σ 𝑘 ∈ 𝐵 𝐶 ) ) |