This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of infinite sums. (Contributed by Mario Carneiro, 18-Aug-2013) (Revised by Mario Carneiro, 23-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumadd.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| isumadd.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| isumadd.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | ||
| isumadd.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) | ||
| isumadd.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) | ||
| isumadd.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) | ||
| isumadd.7 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | ||
| isumadd.8 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ∈ dom ⇝ ) | ||
| Assertion | isumadd | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 ( 𝐴 + 𝐵 ) = ( Σ 𝑘 ∈ 𝑍 𝐴 + Σ 𝑘 ∈ 𝑍 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumadd.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | isumadd.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | isumadd.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | |
| 4 | isumadd.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) | |
| 5 | isumadd.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) | |
| 6 | isumadd.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) | |
| 7 | isumadd.7 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | |
| 8 | isumadd.8 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ∈ dom ⇝ ) | |
| 9 | fveq2 | ⊢ ( 𝑚 = 𝑘 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 10 | fveq2 | ⊢ ( 𝑚 = 𝑘 → ( 𝐺 ‘ 𝑚 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 11 | 9 10 | oveq12d | ⊢ ( 𝑚 = 𝑘 → ( ( 𝐹 ‘ 𝑚 ) + ( 𝐺 ‘ 𝑚 ) ) = ( ( 𝐹 ‘ 𝑘 ) + ( 𝐺 ‘ 𝑘 ) ) ) |
| 12 | eqid | ⊢ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) + ( 𝐺 ‘ 𝑚 ) ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) + ( 𝐺 ‘ 𝑚 ) ) ) | |
| 13 | ovex | ⊢ ( ( 𝐹 ‘ 𝑘 ) + ( 𝐺 ‘ 𝑘 ) ) ∈ V | |
| 14 | 11 12 13 | fvmpt | ⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) + ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) + ( 𝐺 ‘ 𝑘 ) ) ) |
| 15 | 14 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) + ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) + ( 𝐺 ‘ 𝑘 ) ) ) |
| 16 | 3 5 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) + ( 𝐺 ‘ 𝑘 ) ) = ( 𝐴 + 𝐵 ) ) |
| 17 | 15 16 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) + ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( 𝐴 + 𝐵 ) ) |
| 18 | 4 6 | addcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) |
| 19 | 1 2 3 4 7 | isumclim2 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ Σ 𝑘 ∈ 𝑍 𝐴 ) |
| 20 | seqex | ⊢ seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) + ( 𝐺 ‘ 𝑚 ) ) ) ) ∈ V | |
| 21 | 20 | a1i | ⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) + ( 𝐺 ‘ 𝑚 ) ) ) ) ∈ V ) |
| 22 | 1 2 5 6 8 | isumclim2 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ⇝ Σ 𝑘 ∈ 𝑍 𝐵 ) |
| 23 | 3 4 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 24 | 1 2 23 | serf | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℂ ) |
| 25 | 24 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ∈ ℂ ) |
| 26 | 5 6 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 27 | 1 2 26 | serf | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) : 𝑍 ⟶ ℂ ) |
| 28 | 27 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ∈ ℂ ) |
| 29 | simpr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝑍 ) | |
| 30 | 29 1 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 31 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → 𝜑 ) | |
| 32 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 33 | 32 1 | eleqtrrdi | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ 𝑍 ) |
| 34 | 33 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 35 | 31 34 23 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 36 | 31 34 26 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 37 | 34 14 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) + ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) + ( 𝐺 ‘ 𝑘 ) ) ) |
| 38 | 30 35 36 37 | seradd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) + ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) |
| 39 | 1 2 19 21 22 25 28 38 | climadd | ⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) + ( 𝐺 ‘ 𝑚 ) ) ) ) ⇝ ( Σ 𝑘 ∈ 𝑍 𝐴 + Σ 𝑘 ∈ 𝑍 𝐵 ) ) |
| 40 | 1 2 17 18 39 | isumclim | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 ( 𝐴 + 𝐵 ) = ( Σ 𝑘 ∈ 𝑍 𝐴 + Σ 𝑘 ∈ 𝑍 𝐵 ) ) |