This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sum of a singleton is the term. The deduction version of sumsn . (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sumsnd.1 | ⊢ ( 𝜑 → Ⅎ 𝑘 𝐵 ) | |
| sumsnd.2 | ⊢ Ⅎ 𝑘 𝜑 | ||
| sumsnd.3 | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝑀 ) → 𝐴 = 𝐵 ) | ||
| sumsnd.4 | ⊢ ( 𝜑 → 𝑀 ∈ 𝑉 ) | ||
| sumsnd.5 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| Assertion | sumsnd | ⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑀 } 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumsnd.1 | ⊢ ( 𝜑 → Ⅎ 𝑘 𝐵 ) | |
| 2 | sumsnd.2 | ⊢ Ⅎ 𝑘 𝜑 | |
| 3 | sumsnd.3 | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝑀 ) → 𝐴 = 𝐵 ) | |
| 4 | sumsnd.4 | ⊢ ( 𝜑 → 𝑀 ∈ 𝑉 ) | |
| 5 | sumsnd.5 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 6 | csbeq1a | ⊢ ( 𝑘 = 𝑚 → 𝐴 = ⦋ 𝑚 / 𝑘 ⦌ 𝐴 ) | |
| 7 | nfcv | ⊢ Ⅎ 𝑚 𝐴 | |
| 8 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ 𝐴 | |
| 9 | 6 7 8 | cbvsum | ⊢ Σ 𝑘 ∈ { 𝑀 } 𝐴 = Σ 𝑚 ∈ { 𝑀 } ⦋ 𝑚 / 𝑘 ⦌ 𝐴 |
| 10 | csbeq1 | ⊢ ( 𝑚 = ( { 〈 1 , 𝑀 〉 } ‘ 𝑛 ) → ⦋ 𝑚 / 𝑘 ⦌ 𝐴 = ⦋ ( { 〈 1 , 𝑀 〉 } ‘ 𝑛 ) / 𝑘 ⦌ 𝐴 ) | |
| 11 | 1nn | ⊢ 1 ∈ ℕ | |
| 12 | 11 | a1i | ⊢ ( 𝜑 → 1 ∈ ℕ ) |
| 13 | f1osng | ⊢ ( ( 1 ∈ ℕ ∧ 𝑀 ∈ 𝑉 ) → { 〈 1 , 𝑀 〉 } : { 1 } –1-1-onto→ { 𝑀 } ) | |
| 14 | 11 4 13 | sylancr | ⊢ ( 𝜑 → { 〈 1 , 𝑀 〉 } : { 1 } –1-1-onto→ { 𝑀 } ) |
| 15 | 1z | ⊢ 1 ∈ ℤ | |
| 16 | fzsn | ⊢ ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } ) | |
| 17 | f1oeq2 | ⊢ ( ( 1 ... 1 ) = { 1 } → ( { 〈 1 , 𝑀 〉 } : ( 1 ... 1 ) –1-1-onto→ { 𝑀 } ↔ { 〈 1 , 𝑀 〉 } : { 1 } –1-1-onto→ { 𝑀 } ) ) | |
| 18 | 15 16 17 | mp2b | ⊢ ( { 〈 1 , 𝑀 〉 } : ( 1 ... 1 ) –1-1-onto→ { 𝑀 } ↔ { 〈 1 , 𝑀 〉 } : { 1 } –1-1-onto→ { 𝑀 } ) |
| 19 | 14 18 | sylibr | ⊢ ( 𝜑 → { 〈 1 , 𝑀 〉 } : ( 1 ... 1 ) –1-1-onto→ { 𝑀 } ) |
| 20 | elsni | ⊢ ( 𝑚 ∈ { 𝑀 } → 𝑚 = 𝑀 ) | |
| 21 | 20 | adantl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑀 } ) → 𝑚 = 𝑀 ) |
| 22 | 21 | csbeq1d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑀 } ) → ⦋ 𝑚 / 𝑘 ⦌ 𝐴 = ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) |
| 23 | 2 1 4 3 | csbiedf | ⊢ ( 𝜑 → ⦋ 𝑀 / 𝑘 ⦌ 𝐴 = 𝐵 ) |
| 24 | 23 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑀 } ) → ⦋ 𝑀 / 𝑘 ⦌ 𝐴 = 𝐵 ) |
| 25 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑀 } ) → 𝐵 ∈ ℂ ) |
| 26 | 24 25 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑀 } ) → ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
| 27 | 22 26 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑀 } ) → ⦋ 𝑚 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
| 28 | 23 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 1 ) ) → ⦋ 𝑀 / 𝑘 ⦌ 𝐴 = 𝐵 ) |
| 29 | elfz1eq | ⊢ ( 𝑛 ∈ ( 1 ... 1 ) → 𝑛 = 1 ) | |
| 30 | 29 | fveq2d | ⊢ ( 𝑛 ∈ ( 1 ... 1 ) → ( { 〈 1 , 𝑀 〉 } ‘ 𝑛 ) = ( { 〈 1 , 𝑀 〉 } ‘ 1 ) ) |
| 31 | fvsng | ⊢ ( ( 1 ∈ ℕ ∧ 𝑀 ∈ 𝑉 ) → ( { 〈 1 , 𝑀 〉 } ‘ 1 ) = 𝑀 ) | |
| 32 | 11 4 31 | sylancr | ⊢ ( 𝜑 → ( { 〈 1 , 𝑀 〉 } ‘ 1 ) = 𝑀 ) |
| 33 | 30 32 | sylan9eqr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 1 ) ) → ( { 〈 1 , 𝑀 〉 } ‘ 𝑛 ) = 𝑀 ) |
| 34 | 33 | csbeq1d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 1 ) ) → ⦋ ( { 〈 1 , 𝑀 〉 } ‘ 𝑛 ) / 𝑘 ⦌ 𝐴 = ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) |
| 35 | 29 | fveq2d | ⊢ ( 𝑛 ∈ ( 1 ... 1 ) → ( { 〈 1 , 𝐵 〉 } ‘ 𝑛 ) = ( { 〈 1 , 𝐵 〉 } ‘ 1 ) ) |
| 36 | fvsng | ⊢ ( ( 1 ∈ ℕ ∧ 𝐵 ∈ ℂ ) → ( { 〈 1 , 𝐵 〉 } ‘ 1 ) = 𝐵 ) | |
| 37 | 11 5 36 | sylancr | ⊢ ( 𝜑 → ( { 〈 1 , 𝐵 〉 } ‘ 1 ) = 𝐵 ) |
| 38 | 35 37 | sylan9eqr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 1 ) ) → ( { 〈 1 , 𝐵 〉 } ‘ 𝑛 ) = 𝐵 ) |
| 39 | 28 34 38 | 3eqtr4rd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 1 ) ) → ( { 〈 1 , 𝐵 〉 } ‘ 𝑛 ) = ⦋ ( { 〈 1 , 𝑀 〉 } ‘ 𝑛 ) / 𝑘 ⦌ 𝐴 ) |
| 40 | 10 12 19 27 39 | fsum | ⊢ ( 𝜑 → Σ 𝑚 ∈ { 𝑀 } ⦋ 𝑚 / 𝑘 ⦌ 𝐴 = ( seq 1 ( + , { 〈 1 , 𝐵 〉 } ) ‘ 1 ) ) |
| 41 | 9 40 | eqtrid | ⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑀 } 𝐴 = ( seq 1 ( + , { 〈 1 , 𝐵 〉 } ) ‘ 1 ) ) |
| 42 | 15 37 | seq1i | ⊢ ( 𝜑 → ( seq 1 ( + , { 〈 1 , 𝐵 〉 } ) ‘ 1 ) = 𝐵 ) |
| 43 | 41 42 | eqtrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑀 } 𝐴 = 𝐵 ) |