This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Finite sets (cont.)
sucdom
Metamath Proof Explorer
Description: Strict dominance of a set over a natural number is the same as dominance
over its successor. (Contributed by Mario Carneiro , 12-Jan-2013) Avoid
ax-pow . (Revised by BTernaryTau , 4-Dec-2024) (Proof shortened by BJ , 11-Jan-2025)
Ref
Expression
Assertion
sucdom
⊢ A ∈ ω → A ≺ B ↔ suc ⁡ A ≼ B
Proof
Step
Hyp
Ref
Expression
1
sucdom2
⊢ A ≺ B → suc ⁡ A ≼ B
2
nnfi
⊢ A ∈ ω → A ∈ Fin
3
php4
⊢ A ∈ ω → A ≺ suc ⁡ A
4
sdomdomtrfi
⊢ A ∈ Fin ∧ A ≺ suc ⁡ A ∧ suc ⁡ A ≼ B → A ≺ B
5
4
3expia
⊢ A ∈ Fin ∧ A ≺ suc ⁡ A → suc ⁡ A ≼ B → A ≺ B
6
2 3 5
syl2anc
⊢ A ∈ ω → suc ⁡ A ≼ B → A ≺ B
7
1 6
impbid2
⊢ A ∈ ω → A ≺ B ↔ suc ⁡ A ≼ B