This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of an injective function is injective. (Contributed by AV, 20-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1ssf1 | ⊢ ( ( Fun 𝐹 ∧ Fun ◡ 𝐹 ∧ 𝐺 ⊆ 𝐹 ) → Fun ◡ 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funssres | ⊢ ( ( Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ) → ( 𝐹 ↾ dom 𝐺 ) = 𝐺 ) | |
| 2 | funres11 | ⊢ ( Fun ◡ 𝐹 → Fun ◡ ( 𝐹 ↾ dom 𝐺 ) ) | |
| 3 | cnveq | ⊢ ( 𝐺 = ( 𝐹 ↾ dom 𝐺 ) → ◡ 𝐺 = ◡ ( 𝐹 ↾ dom 𝐺 ) ) | |
| 4 | 3 | funeqd | ⊢ ( 𝐺 = ( 𝐹 ↾ dom 𝐺 ) → ( Fun ◡ 𝐺 ↔ Fun ◡ ( 𝐹 ↾ dom 𝐺 ) ) ) |
| 5 | 2 4 | imbitrrid | ⊢ ( 𝐺 = ( 𝐹 ↾ dom 𝐺 ) → ( Fun ◡ 𝐹 → Fun ◡ 𝐺 ) ) |
| 6 | 5 | eqcoms | ⊢ ( ( 𝐹 ↾ dom 𝐺 ) = 𝐺 → ( Fun ◡ 𝐹 → Fun ◡ 𝐺 ) ) |
| 7 | 1 6 | syl | ⊢ ( ( Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ) → ( Fun ◡ 𝐹 → Fun ◡ 𝐺 ) ) |
| 8 | 7 | ex | ⊢ ( Fun 𝐹 → ( 𝐺 ⊆ 𝐹 → ( Fun ◡ 𝐹 → Fun ◡ 𝐺 ) ) ) |
| 9 | 8 | com23 | ⊢ ( Fun 𝐹 → ( Fun ◡ 𝐹 → ( 𝐺 ⊆ 𝐹 → Fun ◡ 𝐺 ) ) ) |
| 10 | 9 | 3imp | ⊢ ( ( Fun 𝐹 ∧ Fun ◡ 𝐹 ∧ 𝐺 ⊆ 𝐹 ) → Fun ◡ 𝐺 ) |