This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The simplified property of being an undirected multigraph. (Contributed by AV, 24-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| isumgr.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | isumgrs | ⊢ ( 𝐺 ∈ 𝑈 → ( 𝐺 ∈ UMGraph ↔ 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | isumgr.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | 1 2 | isumgr | ⊢ ( 𝐺 ∈ 𝑈 → ( 𝐺 ∈ UMGraph ↔ 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 4 | prprrab | ⊢ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } | |
| 5 | 4 | a1i | ⊢ ( 𝐺 ∈ 𝑈 → { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 6 | 5 | feq3d | ⊢ ( 𝐺 ∈ 𝑈 → ( 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 7 | 3 6 | bitrd | ⊢ ( 𝐺 ∈ 𝑈 → ( 𝐺 ∈ UMGraph ↔ 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |