This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring of a subring is a subring. (Contributed by AV, 15-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subsubrng.s | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| Assertion | subsubrng | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → ( 𝐵 ∈ ( SubRng ‘ 𝑆 ) ↔ ( 𝐵 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subsubrng.s | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| 2 | subrngrcl | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝑅 ∈ Rng ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRng ‘ 𝑆 ) ) → 𝑅 ∈ Rng ) |
| 4 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 5 | 4 | subrngss | ⊢ ( 𝐵 ∈ ( SubRng ‘ 𝑆 ) → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
| 6 | 5 | adantl | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRng ‘ 𝑆 ) ) → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
| 7 | 1 | subrngbas | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRng ‘ 𝑆 ) ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 9 | 6 8 | sseqtrrd | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRng ‘ 𝑆 ) ) → 𝐵 ⊆ 𝐴 ) |
| 10 | 1 | oveq1i | ⊢ ( 𝑆 ↾s 𝐵 ) = ( ( 𝑅 ↾s 𝐴 ) ↾s 𝐵 ) |
| 11 | ressabs | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝑅 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) ) | |
| 12 | 10 11 | eqtrid | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑆 ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) ) |
| 13 | 9 12 | syldan | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRng ‘ 𝑆 ) ) → ( 𝑆 ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) ) |
| 14 | eqid | ⊢ ( 𝑆 ↾s 𝐵 ) = ( 𝑆 ↾s 𝐵 ) | |
| 15 | 14 | subrngrng | ⊢ ( 𝐵 ∈ ( SubRng ‘ 𝑆 ) → ( 𝑆 ↾s 𝐵 ) ∈ Rng ) |
| 16 | 15 | adantl | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRng ‘ 𝑆 ) ) → ( 𝑆 ↾s 𝐵 ) ∈ Rng ) |
| 17 | 13 16 | eqeltrrd | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRng ‘ 𝑆 ) ) → ( 𝑅 ↾s 𝐵 ) ∈ Rng ) |
| 18 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 19 | 18 | subrngss | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
| 20 | 19 | adantr | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRng ‘ 𝑆 ) ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
| 21 | 9 20 | sstrd | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRng ‘ 𝑆 ) ) → 𝐵 ⊆ ( Base ‘ 𝑅 ) ) |
| 22 | 18 | issubrng | ⊢ ( 𝐵 ∈ ( SubRng ‘ 𝑅 ) ↔ ( 𝑅 ∈ Rng ∧ ( 𝑅 ↾s 𝐵 ) ∈ Rng ∧ 𝐵 ⊆ ( Base ‘ 𝑅 ) ) ) |
| 23 | 3 17 21 22 | syl3anbrc | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRng ‘ 𝑆 ) ) → 𝐵 ∈ ( SubRng ‘ 𝑅 ) ) |
| 24 | 23 9 | jca | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRng ‘ 𝑆 ) ) → ( 𝐵 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) |
| 25 | 1 | subrngrng | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝑆 ∈ Rng ) |
| 26 | 25 | adantr | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → 𝑆 ∈ Rng ) |
| 27 | 12 | adantrl | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → ( 𝑆 ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) ) |
| 28 | eqid | ⊢ ( 𝑅 ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) | |
| 29 | 28 | subrngrng | ⊢ ( 𝐵 ∈ ( SubRng ‘ 𝑅 ) → ( 𝑅 ↾s 𝐵 ) ∈ Rng ) |
| 30 | 29 | ad2antrl | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → ( 𝑅 ↾s 𝐵 ) ∈ Rng ) |
| 31 | 27 30 | eqeltrd | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → ( 𝑆 ↾s 𝐵 ) ∈ Rng ) |
| 32 | simprr | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → 𝐵 ⊆ 𝐴 ) | |
| 33 | 7 | adantr | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 34 | 32 33 | sseqtrd | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
| 35 | 4 | issubrng | ⊢ ( 𝐵 ∈ ( SubRng ‘ 𝑆 ) ↔ ( 𝑆 ∈ Rng ∧ ( 𝑆 ↾s 𝐵 ) ∈ Rng ∧ 𝐵 ⊆ ( Base ‘ 𝑆 ) ) ) |
| 36 | 26 31 34 35 | syl3anbrc | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → 𝐵 ∈ ( SubRng ‘ 𝑆 ) ) |
| 37 | 24 36 | impbida | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → ( 𝐵 ∈ ( SubRng ‘ 𝑆 ) ↔ ( 𝐵 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) ) |