This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring of a subring is a subring. (Contributed by AV, 15-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subsubrng.s | |- S = ( R |`s A ) |
|
| Assertion | subsubrng | |- ( A e. ( SubRng ` R ) -> ( B e. ( SubRng ` S ) <-> ( B e. ( SubRng ` R ) /\ B C_ A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subsubrng.s | |- S = ( R |`s A ) |
|
| 2 | subrngrcl | |- ( A e. ( SubRng ` R ) -> R e. Rng ) |
|
| 3 | 2 | adantr | |- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> R e. Rng ) |
| 4 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 5 | 4 | subrngss | |- ( B e. ( SubRng ` S ) -> B C_ ( Base ` S ) ) |
| 6 | 5 | adantl | |- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> B C_ ( Base ` S ) ) |
| 7 | 1 | subrngbas | |- ( A e. ( SubRng ` R ) -> A = ( Base ` S ) ) |
| 8 | 7 | adantr | |- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> A = ( Base ` S ) ) |
| 9 | 6 8 | sseqtrrd | |- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> B C_ A ) |
| 10 | 1 | oveq1i | |- ( S |`s B ) = ( ( R |`s A ) |`s B ) |
| 11 | ressabs | |- ( ( A e. ( SubRng ` R ) /\ B C_ A ) -> ( ( R |`s A ) |`s B ) = ( R |`s B ) ) |
|
| 12 | 10 11 | eqtrid | |- ( ( A e. ( SubRng ` R ) /\ B C_ A ) -> ( S |`s B ) = ( R |`s B ) ) |
| 13 | 9 12 | syldan | |- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> ( S |`s B ) = ( R |`s B ) ) |
| 14 | eqid | |- ( S |`s B ) = ( S |`s B ) |
|
| 15 | 14 | subrngrng | |- ( B e. ( SubRng ` S ) -> ( S |`s B ) e. Rng ) |
| 16 | 15 | adantl | |- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> ( S |`s B ) e. Rng ) |
| 17 | 13 16 | eqeltrrd | |- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> ( R |`s B ) e. Rng ) |
| 18 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 19 | 18 | subrngss | |- ( A e. ( SubRng ` R ) -> A C_ ( Base ` R ) ) |
| 20 | 19 | adantr | |- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> A C_ ( Base ` R ) ) |
| 21 | 9 20 | sstrd | |- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> B C_ ( Base ` R ) ) |
| 22 | 18 | issubrng | |- ( B e. ( SubRng ` R ) <-> ( R e. Rng /\ ( R |`s B ) e. Rng /\ B C_ ( Base ` R ) ) ) |
| 23 | 3 17 21 22 | syl3anbrc | |- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> B e. ( SubRng ` R ) ) |
| 24 | 23 9 | jca | |- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> ( B e. ( SubRng ` R ) /\ B C_ A ) ) |
| 25 | 1 | subrngrng | |- ( A e. ( SubRng ` R ) -> S e. Rng ) |
| 26 | 25 | adantr | |- ( ( A e. ( SubRng ` R ) /\ ( B e. ( SubRng ` R ) /\ B C_ A ) ) -> S e. Rng ) |
| 27 | 12 | adantrl | |- ( ( A e. ( SubRng ` R ) /\ ( B e. ( SubRng ` R ) /\ B C_ A ) ) -> ( S |`s B ) = ( R |`s B ) ) |
| 28 | eqid | |- ( R |`s B ) = ( R |`s B ) |
|
| 29 | 28 | subrngrng | |- ( B e. ( SubRng ` R ) -> ( R |`s B ) e. Rng ) |
| 30 | 29 | ad2antrl | |- ( ( A e. ( SubRng ` R ) /\ ( B e. ( SubRng ` R ) /\ B C_ A ) ) -> ( R |`s B ) e. Rng ) |
| 31 | 27 30 | eqeltrd | |- ( ( A e. ( SubRng ` R ) /\ ( B e. ( SubRng ` R ) /\ B C_ A ) ) -> ( S |`s B ) e. Rng ) |
| 32 | simprr | |- ( ( A e. ( SubRng ` R ) /\ ( B e. ( SubRng ` R ) /\ B C_ A ) ) -> B C_ A ) |
|
| 33 | 7 | adantr | |- ( ( A e. ( SubRng ` R ) /\ ( B e. ( SubRng ` R ) /\ B C_ A ) ) -> A = ( Base ` S ) ) |
| 34 | 32 33 | sseqtrd | |- ( ( A e. ( SubRng ` R ) /\ ( B e. ( SubRng ` R ) /\ B C_ A ) ) -> B C_ ( Base ` S ) ) |
| 35 | 4 | issubrng | |- ( B e. ( SubRng ` S ) <-> ( S e. Rng /\ ( S |`s B ) e. Rng /\ B C_ ( Base ` S ) ) ) |
| 36 | 26 31 34 35 | syl3anbrc | |- ( ( A e. ( SubRng ` R ) /\ ( B e. ( SubRng ` R ) /\ B C_ A ) ) -> B e. ( SubRng ` S ) ) |
| 37 | 24 36 | impbida | |- ( A e. ( SubRng ` R ) -> ( B e. ( SubRng ` S ) <-> ( B e. ( SubRng ` R ) /\ B C_ A ) ) ) |