This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring of a nonzero ring is nonzero. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subrgnzr.1 | ||
| Assertion | subrgnzr |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgnzr.1 | ||
| 2 | 1 | subrgring | |
| 3 | 2 | adantl | |
| 4 | eqid | ||
| 5 | eqid | ||
| 6 | 4 5 | nzrnz | |
| 7 | 6 | adantr | |
| 8 | 1 4 | subrg1 | |
| 9 | 8 | adantl | |
| 10 | 1 5 | subrg0 | |
| 11 | 10 | adantl | |
| 12 | 7 9 11 | 3netr3d | |
| 13 | eqid | ||
| 14 | eqid | ||
| 15 | 13 14 | isnzr | |
| 16 | 3 12 15 | sylanbrc |