This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a Moore system, if Y is a member of S , ( S \ { Y } ) and S have the same closure if and only if Y is in the closure of ( S \ { Y } ) . Used in the proof of mrieqvd and mrieqv2d . Deduction form. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mrieqvlemd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) | |
| mrieqvlemd.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | ||
| mrieqvlemd.3 | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) | ||
| mrieqvlemd.4 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) | ||
| Assertion | mrieqvlemd | ⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ↔ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) = ( 𝑁 ‘ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrieqvlemd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) | |
| 2 | mrieqvlemd.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | |
| 3 | mrieqvlemd.3 | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) | |
| 4 | mrieqvlemd.4 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) | |
| 5 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
| 6 | undif1 | ⊢ ( ( 𝑆 ∖ { 𝑌 } ) ∪ { 𝑌 } ) = ( 𝑆 ∪ { 𝑌 } ) | |
| 7 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → 𝑆 ⊆ 𝑋 ) |
| 8 | 7 | ssdifssd | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → ( 𝑆 ∖ { 𝑌 } ) ⊆ 𝑋 ) |
| 9 | 5 2 8 | mrcssidd | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → ( 𝑆 ∖ { 𝑌 } ) ⊆ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) |
| 10 | simpr | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) | |
| 11 | 10 | snssd | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → { 𝑌 } ⊆ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) |
| 12 | 9 11 | unssd | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → ( ( 𝑆 ∖ { 𝑌 } ) ∪ { 𝑌 } ) ⊆ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) |
| 13 | 6 12 | eqsstrrid | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → ( 𝑆 ∪ { 𝑌 } ) ⊆ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) |
| 14 | 13 | unssad | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → 𝑆 ⊆ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) |
| 15 | difssd | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → ( 𝑆 ∖ { 𝑌 } ) ⊆ 𝑆 ) | |
| 16 | 5 2 14 15 | mressmrcd | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → ( 𝑁 ‘ 𝑆 ) = ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) |
| 17 | 16 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) = ( 𝑁 ‘ 𝑆 ) ) |
| 18 | 1 2 3 | mrcssidd | ⊢ ( 𝜑 → 𝑆 ⊆ ( 𝑁 ‘ 𝑆 ) ) |
| 19 | 18 4 | sseldd | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ 𝑆 ) ) |
| 20 | 19 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) = ( 𝑁 ‘ 𝑆 ) ) → 𝑌 ∈ ( 𝑁 ‘ 𝑆 ) ) |
| 21 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) = ( 𝑁 ‘ 𝑆 ) ) → ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) = ( 𝑁 ‘ 𝑆 ) ) | |
| 22 | 20 21 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) = ( 𝑁 ‘ 𝑆 ) ) → 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) |
| 23 | 17 22 | impbida | ⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ↔ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) = ( 𝑁 ‘ 𝑆 ) ) ) |