This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgroup of a p-group is a p-group. (Contributed by Mario Carneiro, 27-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subgpgp | ⊢ ( ( 𝑃 pGrp 𝐺 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑃 pGrp ( 𝐺 ↾s 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pgpprm | ⊢ ( 𝑃 pGrp 𝐺 → 𝑃 ∈ ℙ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝑃 pGrp 𝐺 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑃 ∈ ℙ ) |
| 3 | eqid | ⊢ ( 𝐺 ↾s 𝑆 ) = ( 𝐺 ↾s 𝑆 ) | |
| 4 | 3 | subggrp | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ↾s 𝑆 ) ∈ Grp ) |
| 5 | 4 | adantl | ⊢ ( ( 𝑃 pGrp 𝐺 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐺 ↾s 𝑆 ) ∈ Grp ) |
| 6 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 7 | eqid | ⊢ ( od ‘ 𝐺 ) = ( od ‘ 𝐺 ) | |
| 8 | 6 7 | ispgp | ⊢ ( 𝑃 pGrp 𝐺 ↔ ( 𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 9 | 8 | simp3bi | ⊢ ( 𝑃 pGrp 𝐺 → ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝑃 pGrp 𝐺 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) |
| 11 | 6 | subgss | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 12 | 11 | adantl | ⊢ ( ( 𝑃 pGrp 𝐺 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 13 | ssralv | ⊢ ( 𝑆 ⊆ ( Base ‘ 𝐺 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) → ∀ 𝑥 ∈ 𝑆 ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝑃 pGrp 𝐺 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) → ∀ 𝑥 ∈ 𝑆 ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 15 | eqid | ⊢ ( od ‘ ( 𝐺 ↾s 𝑆 ) ) = ( od ‘ ( 𝐺 ↾s 𝑆 ) ) | |
| 16 | 3 7 15 | subgod | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ( od ‘ ( 𝐺 ↾s 𝑆 ) ) ‘ 𝑥 ) ) |
| 17 | 16 | adantll | ⊢ ( ( ( 𝑃 pGrp 𝐺 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ( od ‘ ( 𝐺 ↾s 𝑆 ) ) ‘ 𝑥 ) ) |
| 18 | 17 | eqeq1d | ⊢ ( ( ( 𝑃 pGrp 𝐺 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ↔ ( ( od ‘ ( 𝐺 ↾s 𝑆 ) ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 19 | 18 | rexbidv | ⊢ ( ( ( 𝑃 pGrp 𝐺 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ( ( od ‘ ( 𝐺 ↾s 𝑆 ) ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 20 | 19 | ralbidva | ⊢ ( ( 𝑃 pGrp 𝐺 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ∀ 𝑥 ∈ 𝑆 ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ↔ ∀ 𝑥 ∈ 𝑆 ∃ 𝑛 ∈ ℕ0 ( ( od ‘ ( 𝐺 ↾s 𝑆 ) ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 21 | 14 20 | sylibd | ⊢ ( ( 𝑃 pGrp 𝐺 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) → ∀ 𝑥 ∈ 𝑆 ∃ 𝑛 ∈ ℕ0 ( ( od ‘ ( 𝐺 ↾s 𝑆 ) ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 22 | 10 21 | mpd | ⊢ ( ( 𝑃 pGrp 𝐺 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ∀ 𝑥 ∈ 𝑆 ∃ 𝑛 ∈ ℕ0 ( ( od ‘ ( 𝐺 ↾s 𝑆 ) ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) |
| 23 | 3 | subgbas | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 24 | 23 | adantl | ⊢ ( ( 𝑃 pGrp 𝐺 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑆 = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 25 | 22 24 | raleqtrdv | ⊢ ( ( 𝑃 pGrp 𝐺 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ∀ 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ∃ 𝑛 ∈ ℕ0 ( ( od ‘ ( 𝐺 ↾s 𝑆 ) ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) |
| 26 | eqid | ⊢ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) | |
| 27 | 26 15 | ispgp | ⊢ ( 𝑃 pGrp ( 𝐺 ↾s 𝑆 ) ↔ ( 𝑃 ∈ ℙ ∧ ( 𝐺 ↾s 𝑆 ) ∈ Grp ∧ ∀ 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ∃ 𝑛 ∈ ℕ0 ( ( od ‘ ( 𝐺 ↾s 𝑆 ) ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 28 | 2 5 25 27 | syl3anbrc | ⊢ ( ( 𝑃 pGrp 𝐺 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑃 pGrp ( 𝐺 ↾s 𝑆 ) ) |