This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgroup of a p-group is a p-group. (Contributed by Mario Carneiro, 27-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subgpgp | |- ( ( P pGrp G /\ S e. ( SubGrp ` G ) ) -> P pGrp ( G |`s S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pgpprm | |- ( P pGrp G -> P e. Prime ) |
|
| 2 | 1 | adantr | |- ( ( P pGrp G /\ S e. ( SubGrp ` G ) ) -> P e. Prime ) |
| 3 | eqid | |- ( G |`s S ) = ( G |`s S ) |
|
| 4 | 3 | subggrp | |- ( S e. ( SubGrp ` G ) -> ( G |`s S ) e. Grp ) |
| 5 | 4 | adantl | |- ( ( P pGrp G /\ S e. ( SubGrp ` G ) ) -> ( G |`s S ) e. Grp ) |
| 6 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 7 | eqid | |- ( od ` G ) = ( od ` G ) |
|
| 8 | 6 7 | ispgp | |- ( P pGrp G <-> ( P e. Prime /\ G e. Grp /\ A. x e. ( Base ` G ) E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) ) ) |
| 9 | 8 | simp3bi | |- ( P pGrp G -> A. x e. ( Base ` G ) E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) ) |
| 10 | 9 | adantr | |- ( ( P pGrp G /\ S e. ( SubGrp ` G ) ) -> A. x e. ( Base ` G ) E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) ) |
| 11 | 6 | subgss | |- ( S e. ( SubGrp ` G ) -> S C_ ( Base ` G ) ) |
| 12 | 11 | adantl | |- ( ( P pGrp G /\ S e. ( SubGrp ` G ) ) -> S C_ ( Base ` G ) ) |
| 13 | ssralv | |- ( S C_ ( Base ` G ) -> ( A. x e. ( Base ` G ) E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) -> A. x e. S E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) ) ) |
|
| 14 | 12 13 | syl | |- ( ( P pGrp G /\ S e. ( SubGrp ` G ) ) -> ( A. x e. ( Base ` G ) E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) -> A. x e. S E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) ) ) |
| 15 | eqid | |- ( od ` ( G |`s S ) ) = ( od ` ( G |`s S ) ) |
|
| 16 | 3 7 15 | subgod | |- ( ( S e. ( SubGrp ` G ) /\ x e. S ) -> ( ( od ` G ) ` x ) = ( ( od ` ( G |`s S ) ) ` x ) ) |
| 17 | 16 | adantll | |- ( ( ( P pGrp G /\ S e. ( SubGrp ` G ) ) /\ x e. S ) -> ( ( od ` G ) ` x ) = ( ( od ` ( G |`s S ) ) ` x ) ) |
| 18 | 17 | eqeq1d | |- ( ( ( P pGrp G /\ S e. ( SubGrp ` G ) ) /\ x e. S ) -> ( ( ( od ` G ) ` x ) = ( P ^ n ) <-> ( ( od ` ( G |`s S ) ) ` x ) = ( P ^ n ) ) ) |
| 19 | 18 | rexbidv | |- ( ( ( P pGrp G /\ S e. ( SubGrp ` G ) ) /\ x e. S ) -> ( E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) <-> E. n e. NN0 ( ( od ` ( G |`s S ) ) ` x ) = ( P ^ n ) ) ) |
| 20 | 19 | ralbidva | |- ( ( P pGrp G /\ S e. ( SubGrp ` G ) ) -> ( A. x e. S E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) <-> A. x e. S E. n e. NN0 ( ( od ` ( G |`s S ) ) ` x ) = ( P ^ n ) ) ) |
| 21 | 14 20 | sylibd | |- ( ( P pGrp G /\ S e. ( SubGrp ` G ) ) -> ( A. x e. ( Base ` G ) E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) -> A. x e. S E. n e. NN0 ( ( od ` ( G |`s S ) ) ` x ) = ( P ^ n ) ) ) |
| 22 | 10 21 | mpd | |- ( ( P pGrp G /\ S e. ( SubGrp ` G ) ) -> A. x e. S E. n e. NN0 ( ( od ` ( G |`s S ) ) ` x ) = ( P ^ n ) ) |
| 23 | 3 | subgbas | |- ( S e. ( SubGrp ` G ) -> S = ( Base ` ( G |`s S ) ) ) |
| 24 | 23 | adantl | |- ( ( P pGrp G /\ S e. ( SubGrp ` G ) ) -> S = ( Base ` ( G |`s S ) ) ) |
| 25 | 22 24 | raleqtrdv | |- ( ( P pGrp G /\ S e. ( SubGrp ` G ) ) -> A. x e. ( Base ` ( G |`s S ) ) E. n e. NN0 ( ( od ` ( G |`s S ) ) ` x ) = ( P ^ n ) ) |
| 26 | eqid | |- ( Base ` ( G |`s S ) ) = ( Base ` ( G |`s S ) ) |
|
| 27 | 26 15 | ispgp | |- ( P pGrp ( G |`s S ) <-> ( P e. Prime /\ ( G |`s S ) e. Grp /\ A. x e. ( Base ` ( G |`s S ) ) E. n e. NN0 ( ( od ` ( G |`s S ) ) ` x ) = ( P ^ n ) ) ) |
| 28 | 2 5 25 27 | syl3anbrc | |- ( ( P pGrp G /\ S e. ( SubGrp ` G ) ) -> P pGrp ( G |`s S ) ) |