This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order of an element is the same in a subgroup. (Contributed by Mario Carneiro, 14-Jan-2015) (Proof shortened by Stefan O'Rear, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | submod.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑌 ) | |
| submod.o | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| submod.p | ⊢ 𝑃 = ( od ‘ 𝐻 ) | ||
| Assertion | subgod | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) → ( 𝑂 ‘ 𝐴 ) = ( 𝑃 ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submod.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑌 ) | |
| 2 | submod.o | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | submod.p | ⊢ 𝑃 = ( od ‘ 𝐻 ) | |
| 4 | subgsubm | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ) | |
| 5 | 1 2 3 | submod | ⊢ ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) → ( 𝑂 ‘ 𝐴 ) = ( 𝑃 ‘ 𝐴 ) ) |
| 6 | 4 5 | sylan | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) → ( 𝑂 ‘ 𝐴 ) = ( 𝑃 ‘ 𝐴 ) ) |