This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. Analogous to opth , this theorem shows a way of representing a pair of vectors. (Contributed by NM, 5-Jul-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subgdisj.p | ||
| subgdisj.o | |||
| subgdisj.z | |||
| subgdisj.t | |||
| subgdisj.u | |||
| subgdisj.i | |||
| subgdisj.s | |||
| subgdisj.a | |||
| subgdisj.c | |||
| subgdisj.b | |||
| subgdisj.d | |||
| Assertion | subgdisjb |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgdisj.p | ||
| 2 | subgdisj.o | ||
| 3 | subgdisj.z | ||
| 4 | subgdisj.t | ||
| 5 | subgdisj.u | ||
| 6 | subgdisj.i | ||
| 7 | subgdisj.s | ||
| 8 | subgdisj.a | ||
| 9 | subgdisj.c | ||
| 10 | subgdisj.b | ||
| 11 | subgdisj.d | ||
| 12 | 4 | adantr | |
| 13 | 5 | adantr | |
| 14 | 6 | adantr | |
| 15 | 7 | adantr | |
| 16 | 8 | adantr | |
| 17 | 9 | adantr | |
| 18 | 10 | adantr | |
| 19 | 11 | adantr | |
| 20 | simpr | ||
| 21 | 1 2 3 12 13 14 15 16 17 18 19 20 | subgdisj1 | |
| 22 | 1 2 3 12 13 14 15 16 17 18 19 20 | subgdisj2 | |
| 23 | 21 22 | jca | |
| 24 | 23 | ex | |
| 25 | oveq12 | ||
| 26 | 24 25 | impbid1 |