This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left projection function (for a direct product of group subspaces). (Contributed by Mario Carneiro, 15-Oct-2015) (Revised by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pj1fval.v | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| pj1fval.a | ⊢ + = ( +g ‘ 𝐺 ) | ||
| pj1fval.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | ||
| pj1fval.p | ⊢ 𝑃 = ( proj1 ‘ 𝐺 ) | ||
| Assertion | pj1fval | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( 𝑇 𝑃 𝑈 ) = ( 𝑧 ∈ ( 𝑇 ⊕ 𝑈 ) ↦ ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pj1fval.v | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | pj1fval.a | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | pj1fval.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 4 | pj1fval.p | ⊢ 𝑃 = ( proj1 ‘ 𝐺 ) | |
| 5 | elex | ⊢ ( 𝐺 ∈ 𝑉 → 𝐺 ∈ V ) | |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → 𝐺 ∈ V ) |
| 7 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = ( Base ‘ 𝐺 ) ) | |
| 8 | 7 1 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = 𝐵 ) |
| 9 | 8 | pweqd | ⊢ ( 𝑔 = 𝐺 → 𝒫 ( Base ‘ 𝑔 ) = 𝒫 𝐵 ) |
| 10 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( LSSum ‘ 𝑔 ) = ( LSSum ‘ 𝐺 ) ) | |
| 11 | 10 3 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( LSSum ‘ 𝑔 ) = ⊕ ) |
| 12 | 11 | oveqd | ⊢ ( 𝑔 = 𝐺 → ( 𝑡 ( LSSum ‘ 𝑔 ) 𝑢 ) = ( 𝑡 ⊕ 𝑢 ) ) |
| 13 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( +g ‘ 𝑔 ) = ( +g ‘ 𝐺 ) ) | |
| 14 | 13 2 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( +g ‘ 𝑔 ) = + ) |
| 15 | 14 | oveqd | ⊢ ( 𝑔 = 𝐺 → ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) = ( 𝑥 + 𝑦 ) ) |
| 16 | 15 | eqeq2d | ⊢ ( 𝑔 = 𝐺 → ( 𝑧 = ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) ↔ 𝑧 = ( 𝑥 + 𝑦 ) ) ) |
| 17 | 16 | rexbidv | ⊢ ( 𝑔 = 𝐺 → ( ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) ↔ ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 + 𝑦 ) ) ) |
| 18 | 17 | riotabidv | ⊢ ( 𝑔 = 𝐺 → ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) ) = ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 + 𝑦 ) ) ) |
| 19 | 12 18 | mpteq12dv | ⊢ ( 𝑔 = 𝐺 → ( 𝑧 ∈ ( 𝑡 ( LSSum ‘ 𝑔 ) 𝑢 ) ↦ ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) ) ) = ( 𝑧 ∈ ( 𝑡 ⊕ 𝑢 ) ↦ ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 + 𝑦 ) ) ) ) |
| 20 | 9 9 19 | mpoeq123dv | ⊢ ( 𝑔 = 𝐺 → ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑔 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑔 ) ↦ ( 𝑧 ∈ ( 𝑡 ( LSSum ‘ 𝑔 ) 𝑢 ) ↦ ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) ) ) ) = ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ( 𝑧 ∈ ( 𝑡 ⊕ 𝑢 ) ↦ ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 + 𝑦 ) ) ) ) ) |
| 21 | df-pj1 | ⊢ proj1 = ( 𝑔 ∈ V ↦ ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑔 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑔 ) ↦ ( 𝑧 ∈ ( 𝑡 ( LSSum ‘ 𝑔 ) 𝑢 ) ↦ ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) ) ) ) ) | |
| 22 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 23 | 22 | pwex | ⊢ 𝒫 𝐵 ∈ V |
| 24 | 23 23 | mpoex | ⊢ ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ( 𝑧 ∈ ( 𝑡 ⊕ 𝑢 ) ↦ ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 + 𝑦 ) ) ) ) ∈ V |
| 25 | 20 21 24 | fvmpt | ⊢ ( 𝐺 ∈ V → ( proj1 ‘ 𝐺 ) = ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ( 𝑧 ∈ ( 𝑡 ⊕ 𝑢 ) ↦ ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 + 𝑦 ) ) ) ) ) |
| 26 | 6 25 | syl | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( proj1 ‘ 𝐺 ) = ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ( 𝑧 ∈ ( 𝑡 ⊕ 𝑢 ) ↦ ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 + 𝑦 ) ) ) ) ) |
| 27 | 4 26 | eqtrid | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → 𝑃 = ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ( 𝑧 ∈ ( 𝑡 ⊕ 𝑢 ) ↦ ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 + 𝑦 ) ) ) ) ) |
| 28 | oveq12 | ⊢ ( ( 𝑡 = 𝑇 ∧ 𝑢 = 𝑈 ) → ( 𝑡 ⊕ 𝑢 ) = ( 𝑇 ⊕ 𝑈 ) ) | |
| 29 | 28 | adantl | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑡 = 𝑇 ∧ 𝑢 = 𝑈 ) ) → ( 𝑡 ⊕ 𝑢 ) = ( 𝑇 ⊕ 𝑈 ) ) |
| 30 | simprl | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑡 = 𝑇 ∧ 𝑢 = 𝑈 ) ) → 𝑡 = 𝑇 ) | |
| 31 | simprr | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑡 = 𝑇 ∧ 𝑢 = 𝑈 ) ) → 𝑢 = 𝑈 ) | |
| 32 | 31 | rexeqdv | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑡 = 𝑇 ∧ 𝑢 = 𝑈 ) ) → ( ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 + 𝑦 ) ↔ ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ) |
| 33 | 30 32 | riotaeqbidv | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑡 = 𝑇 ∧ 𝑢 = 𝑈 ) ) → ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 + 𝑦 ) ) = ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ) |
| 34 | 29 33 | mpteq12dv | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑡 = 𝑇 ∧ 𝑢 = 𝑈 ) ) → ( 𝑧 ∈ ( 𝑡 ⊕ 𝑢 ) ↦ ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 + 𝑦 ) ) ) = ( 𝑧 ∈ ( 𝑇 ⊕ 𝑈 ) ↦ ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ) ) |
| 35 | simp2 | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → 𝑇 ⊆ 𝐵 ) | |
| 36 | 22 | elpw2 | ⊢ ( 𝑇 ∈ 𝒫 𝐵 ↔ 𝑇 ⊆ 𝐵 ) |
| 37 | 35 36 | sylibr | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → 𝑇 ∈ 𝒫 𝐵 ) |
| 38 | simp3 | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → 𝑈 ⊆ 𝐵 ) | |
| 39 | 22 | elpw2 | ⊢ ( 𝑈 ∈ 𝒫 𝐵 ↔ 𝑈 ⊆ 𝐵 ) |
| 40 | 38 39 | sylibr | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → 𝑈 ∈ 𝒫 𝐵 ) |
| 41 | ovex | ⊢ ( 𝑇 ⊕ 𝑈 ) ∈ V | |
| 42 | 41 | mptex | ⊢ ( 𝑧 ∈ ( 𝑇 ⊕ 𝑈 ) ↦ ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ) ∈ V |
| 43 | 42 | a1i | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( 𝑧 ∈ ( 𝑇 ⊕ 𝑈 ) ↦ ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ) ∈ V ) |
| 44 | 27 34 37 40 43 | ovmpod | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( 𝑇 𝑃 𝑈 ) = ( 𝑧 ∈ ( 𝑇 ⊕ 𝑈 ) ↦ ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ) ) |