This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subcan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) = ( 𝐴 − 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 2 | simp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 3 | 1 2 | addcomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 + 𝐴 ) = ( 𝐴 + 𝐵 ) ) |
| 4 | 3 | eqeq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 + 𝐴 ) = ( 𝐴 + 𝐶 ) ↔ ( 𝐴 + 𝐵 ) = ( 𝐴 + 𝐶 ) ) ) |
| 5 | simp3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐶 ∈ ℂ ) | |
| 6 | addsubeq4 | ⊢ ( ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) ∧ ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) → ( ( 𝐵 + 𝐴 ) = ( 𝐴 + 𝐶 ) ↔ ( 𝐴 − 𝐵 ) = ( 𝐴 − 𝐶 ) ) ) | |
| 7 | 1 2 2 5 6 | syl22anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 + 𝐴 ) = ( 𝐴 + 𝐶 ) ↔ ( 𝐴 − 𝐵 ) = ( 𝐴 − 𝐶 ) ) ) |
| 8 | addcan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) = ( 𝐴 + 𝐶 ) ↔ 𝐵 = 𝐶 ) ) | |
| 9 | 4 7 8 | 3bitr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) = ( 𝐴 − 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |