This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for addition. Theorem I.1 of Apostol p. 18. (Contributed by NM, 22-Nov-1994) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addcan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) = ( 𝐴 + 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnegex2 | ⊢ ( 𝐴 ∈ ℂ → ∃ 𝑥 ∈ ℂ ( 𝑥 + 𝐴 ) = 0 ) | |
| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ∃ 𝑥 ∈ ℂ ( 𝑥 + 𝐴 ) = 0 ) |
| 3 | oveq2 | ⊢ ( ( 𝐴 + 𝐵 ) = ( 𝐴 + 𝐶 ) → ( 𝑥 + ( 𝐴 + 𝐵 ) ) = ( 𝑥 + ( 𝐴 + 𝐶 ) ) ) | |
| 4 | simprr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( 𝑥 + 𝐴 ) = 0 ) | |
| 5 | 4 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( ( 𝑥 + 𝐴 ) + 𝐵 ) = ( 0 + 𝐵 ) ) |
| 6 | simprl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → 𝑥 ∈ ℂ ) | |
| 7 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → 𝐴 ∈ ℂ ) | |
| 8 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → 𝐵 ∈ ℂ ) | |
| 9 | 6 7 8 | addassd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( ( 𝑥 + 𝐴 ) + 𝐵 ) = ( 𝑥 + ( 𝐴 + 𝐵 ) ) ) |
| 10 | addlid | ⊢ ( 𝐵 ∈ ℂ → ( 0 + 𝐵 ) = 𝐵 ) | |
| 11 | 8 10 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( 0 + 𝐵 ) = 𝐵 ) |
| 12 | 5 9 11 | 3eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( 𝑥 + ( 𝐴 + 𝐵 ) ) = 𝐵 ) |
| 13 | 4 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( ( 𝑥 + 𝐴 ) + 𝐶 ) = ( 0 + 𝐶 ) ) |
| 14 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → 𝐶 ∈ ℂ ) | |
| 15 | 6 7 14 | addassd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( ( 𝑥 + 𝐴 ) + 𝐶 ) = ( 𝑥 + ( 𝐴 + 𝐶 ) ) ) |
| 16 | addlid | ⊢ ( 𝐶 ∈ ℂ → ( 0 + 𝐶 ) = 𝐶 ) | |
| 17 | 14 16 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( 0 + 𝐶 ) = 𝐶 ) |
| 18 | 13 15 17 | 3eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( 𝑥 + ( 𝐴 + 𝐶 ) ) = 𝐶 ) |
| 19 | 12 18 | eqeq12d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( ( 𝑥 + ( 𝐴 + 𝐵 ) ) = ( 𝑥 + ( 𝐴 + 𝐶 ) ) ↔ 𝐵 = 𝐶 ) ) |
| 20 | 3 19 | imbitrid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( ( 𝐴 + 𝐵 ) = ( 𝐴 + 𝐶 ) → 𝐵 = 𝐶 ) ) |
| 21 | oveq2 | ⊢ ( 𝐵 = 𝐶 → ( 𝐴 + 𝐵 ) = ( 𝐴 + 𝐶 ) ) | |
| 22 | 20 21 | impbid1 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( ( 𝐴 + 𝐵 ) = ( 𝐴 + 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
| 23 | 2 22 | rexlimddv | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) = ( 𝐴 + 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |