This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subcan | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) = ( A - C ) <-> B = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> B e. CC ) |
|
| 2 | simp1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> A e. CC ) |
|
| 3 | 1 2 | addcomd | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B + A ) = ( A + B ) ) |
| 4 | 3 | eqeq1d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( B + A ) = ( A + C ) <-> ( A + B ) = ( A + C ) ) ) |
| 5 | simp3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> C e. CC ) |
|
| 6 | addsubeq4 | |- ( ( ( B e. CC /\ A e. CC ) /\ ( A e. CC /\ C e. CC ) ) -> ( ( B + A ) = ( A + C ) <-> ( A - B ) = ( A - C ) ) ) |
|
| 7 | 1 2 2 5 6 | syl22anc | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( B + A ) = ( A + C ) <-> ( A - B ) = ( A - C ) ) ) |
| 8 | addcan | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) = ( A + C ) <-> B = C ) ) |
|
| 9 | 4 7 8 | 3bitr3d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) = ( A - C ) <-> B = C ) ) |