This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity function is a continuous function from one topology to another topology on the same set iff the domain is finer than the codomain. (Contributed by Mario Carneiro, 21-Mar-2015) (Revised by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssidcn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) → ( ( I ↾ 𝑋 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ 𝐾 ⊆ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) → ( ( I ↾ 𝑋 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( ( I ↾ 𝑋 ) : 𝑋 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐾 ( ◡ ( I ↾ 𝑋 ) “ 𝑥 ) ∈ 𝐽 ) ) ) | |
| 2 | f1oi | ⊢ ( I ↾ 𝑋 ) : 𝑋 –1-1-onto→ 𝑋 | |
| 3 | f1of | ⊢ ( ( I ↾ 𝑋 ) : 𝑋 –1-1-onto→ 𝑋 → ( I ↾ 𝑋 ) : 𝑋 ⟶ 𝑋 ) | |
| 4 | 2 3 | ax-mp | ⊢ ( I ↾ 𝑋 ) : 𝑋 ⟶ 𝑋 |
| 5 | 4 | biantrur | ⊢ ( ∀ 𝑥 ∈ 𝐾 ( ◡ ( I ↾ 𝑋 ) “ 𝑥 ) ∈ 𝐽 ↔ ( ( I ↾ 𝑋 ) : 𝑋 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐾 ( ◡ ( I ↾ 𝑋 ) “ 𝑥 ) ∈ 𝐽 ) ) |
| 6 | 1 5 | bitr4di | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) → ( ( I ↾ 𝑋 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ∀ 𝑥 ∈ 𝐾 ( ◡ ( I ↾ 𝑋 ) “ 𝑥 ) ∈ 𝐽 ) ) |
| 7 | cnvresid | ⊢ ◡ ( I ↾ 𝑋 ) = ( I ↾ 𝑋 ) | |
| 8 | 7 | imaeq1i | ⊢ ( ◡ ( I ↾ 𝑋 ) “ 𝑥 ) = ( ( I ↾ 𝑋 ) “ 𝑥 ) |
| 9 | elssuni | ⊢ ( 𝑥 ∈ 𝐾 → 𝑥 ⊆ ∪ 𝐾 ) | |
| 10 | 9 | adantl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝐾 ) → 𝑥 ⊆ ∪ 𝐾 ) |
| 11 | toponuni | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐾 ) | |
| 12 | 11 | ad2antlr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝐾 ) → 𝑋 = ∪ 𝐾 ) |
| 13 | 10 12 | sseqtrrd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝐾 ) → 𝑥 ⊆ 𝑋 ) |
| 14 | resiima | ⊢ ( 𝑥 ⊆ 𝑋 → ( ( I ↾ 𝑋 ) “ 𝑥 ) = 𝑥 ) | |
| 15 | 13 14 | syl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝐾 ) → ( ( I ↾ 𝑋 ) “ 𝑥 ) = 𝑥 ) |
| 16 | 8 15 | eqtrid | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝐾 ) → ( ◡ ( I ↾ 𝑋 ) “ 𝑥 ) = 𝑥 ) |
| 17 | 16 | eleq1d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝐾 ) → ( ( ◡ ( I ↾ 𝑋 ) “ 𝑥 ) ∈ 𝐽 ↔ 𝑥 ∈ 𝐽 ) ) |
| 18 | 17 | ralbidva | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐾 ( ◡ ( I ↾ 𝑋 ) “ 𝑥 ) ∈ 𝐽 ↔ ∀ 𝑥 ∈ 𝐾 𝑥 ∈ 𝐽 ) ) |
| 19 | dfss3 | ⊢ ( 𝐾 ⊆ 𝐽 ↔ ∀ 𝑥 ∈ 𝐾 𝑥 ∈ 𝐽 ) | |
| 20 | 18 19 | bitr4di | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐾 ( ◡ ( I ↾ 𝑋 ) “ 𝑥 ) ∈ 𝐽 ↔ 𝐾 ⊆ 𝐽 ) ) |
| 21 | 6 20 | bitrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) → ( ( I ↾ 𝑋 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ 𝐾 ⊆ 𝐽 ) ) |