This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of a nonempty finite family of open sets is open. (Contributed by Mario Carneiro, 14-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iinopn | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr3 | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ) → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) | |
| 2 | dfiin2g | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ) → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) |
| 4 | simpl | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ) → 𝐽 ∈ Top ) | |
| 5 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 6 | 5 | rnmpt | ⊢ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } |
| 7 | 5 | fmpt | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ 𝐽 ) |
| 8 | 1 7 | sylib | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ 𝐽 ) |
| 9 | 8 | frnd | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ) → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝐽 ) |
| 10 | 6 9 | eqsstrrid | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ⊆ 𝐽 ) |
| 11 | 8 | fdmd | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 12 | simpr2 | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ) → 𝐴 ≠ ∅ ) | |
| 13 | 11 12 | eqnetrd | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≠ ∅ ) |
| 14 | dm0rn0 | ⊢ ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∅ ↔ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∅ ) | |
| 15 | 6 | eqeq1i | ⊢ ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∅ ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } = ∅ ) |
| 16 | 14 15 | bitri | ⊢ ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∅ ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } = ∅ ) |
| 17 | 16 | necon3bii | ⊢ ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≠ ∅ ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ≠ ∅ ) |
| 18 | 13 17 | sylib | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ≠ ∅ ) |
| 19 | simpr1 | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ) → 𝐴 ∈ Fin ) | |
| 20 | abrexfi | ⊢ ( 𝐴 ∈ Fin → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ Fin ) | |
| 21 | 19 20 | syl | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ Fin ) |
| 22 | fiinopn | ⊢ ( 𝐽 ∈ Top → ( ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ⊆ 𝐽 ∧ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ≠ ∅ ∧ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ Fin ) → ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ 𝐽 ) ) | |
| 23 | 22 | imp | ⊢ ( ( 𝐽 ∈ Top ∧ ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ⊆ 𝐽 ∧ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ≠ ∅ ∧ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ Fin ) ) → ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ 𝐽 ) |
| 24 | 4 10 18 21 23 | syl13anc | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ) → ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ 𝐽 ) |
| 25 | 3 24 | eqeltrd | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) |