This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of the domain of a class which contains two ordered pairs with different first components is greater than or equal to 2. (Contributed by AV, 12-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hashdmpropge2.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| hashdmpropge2.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| hashdmpropge2.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | ||
| hashdmpropge2.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑌 ) | ||
| hashdmpropge2.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑍 ) | ||
| hashdmpropge2.n | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | ||
| hashdmpropge2.s | ⊢ ( 𝜑 → { 〈 𝐴 , 𝐶 〉 , 〈 𝐵 , 𝐷 〉 } ⊆ 𝐹 ) | ||
| Assertion | hashdmpropge2 | ⊢ ( 𝜑 → 2 ≤ ( ♯ ‘ dom 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashdmpropge2.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | hashdmpropge2.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 3 | hashdmpropge2.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | |
| 4 | hashdmpropge2.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑌 ) | |
| 5 | hashdmpropge2.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑍 ) | |
| 6 | hashdmpropge2.n | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | |
| 7 | hashdmpropge2.s | ⊢ ( 𝜑 → { 〈 𝐴 , 𝐶 〉 , 〈 𝐵 , 𝐷 〉 } ⊆ 𝐹 ) | |
| 8 | 5 | dmexd | ⊢ ( 𝜑 → dom 𝐹 ∈ V ) |
| 9 | dmpropg | ⊢ ( ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) → dom { 〈 𝐴 , 𝐶 〉 , 〈 𝐵 , 𝐷 〉 } = { 𝐴 , 𝐵 } ) | |
| 10 | 3 4 9 | syl2anc | ⊢ ( 𝜑 → dom { 〈 𝐴 , 𝐶 〉 , 〈 𝐵 , 𝐷 〉 } = { 𝐴 , 𝐵 } ) |
| 11 | dmss | ⊢ ( { 〈 𝐴 , 𝐶 〉 , 〈 𝐵 , 𝐷 〉 } ⊆ 𝐹 → dom { 〈 𝐴 , 𝐶 〉 , 〈 𝐵 , 𝐷 〉 } ⊆ dom 𝐹 ) | |
| 12 | 7 11 | syl | ⊢ ( 𝜑 → dom { 〈 𝐴 , 𝐶 〉 , 〈 𝐵 , 𝐷 〉 } ⊆ dom 𝐹 ) |
| 13 | 10 12 | eqsstrrd | ⊢ ( 𝜑 → { 𝐴 , 𝐵 } ⊆ dom 𝐹 ) |
| 14 | prssg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹 ) ↔ { 𝐴 , 𝐵 } ⊆ dom 𝐹 ) ) | |
| 15 | 1 2 14 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹 ) ↔ { 𝐴 , 𝐵 } ⊆ dom 𝐹 ) ) |
| 16 | neeq1 | ⊢ ( 𝑎 = 𝐴 → ( 𝑎 ≠ 𝑏 ↔ 𝐴 ≠ 𝑏 ) ) | |
| 17 | neeq2 | ⊢ ( 𝑏 = 𝐵 → ( 𝐴 ≠ 𝑏 ↔ 𝐴 ≠ 𝐵 ) ) | |
| 18 | 16 17 | rspc2ev | ⊢ ( ( 𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹 ∧ 𝐴 ≠ 𝐵 ) → ∃ 𝑎 ∈ dom 𝐹 ∃ 𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏 ) |
| 19 | 18 | 3expa | ⊢ ( ( ( 𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹 ) ∧ 𝐴 ≠ 𝐵 ) → ∃ 𝑎 ∈ dom 𝐹 ∃ 𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏 ) |
| 20 | 19 | expcom | ⊢ ( 𝐴 ≠ 𝐵 → ( ( 𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹 ) → ∃ 𝑎 ∈ dom 𝐹 ∃ 𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏 ) ) |
| 21 | 6 20 | syl | ⊢ ( 𝜑 → ( ( 𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹 ) → ∃ 𝑎 ∈ dom 𝐹 ∃ 𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏 ) ) |
| 22 | 15 21 | sylbird | ⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ dom 𝐹 → ∃ 𝑎 ∈ dom 𝐹 ∃ 𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏 ) ) |
| 23 | 13 22 | mpd | ⊢ ( 𝜑 → ∃ 𝑎 ∈ dom 𝐹 ∃ 𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏 ) |
| 24 | hashge2el2difr | ⊢ ( ( dom 𝐹 ∈ V ∧ ∃ 𝑎 ∈ dom 𝐹 ∃ 𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏 ) → 2 ≤ ( ♯ ‘ dom 𝐹 ) ) | |
| 25 | 8 23 24 | syl2anc | ⊢ ( 𝜑 → 2 ≤ ( ♯ ‘ dom 𝐹 ) ) |