This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for structvtxval and structiedg0val . (Contributed by AV, 23-Sep-2020) (Revised by AV, 12-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | structvtxvallem.s | |- S e. NN |
|
| structvtxvallem.b | |- ( Base ` ndx ) < S |
||
| structvtxvallem.g | |- G = { <. ( Base ` ndx ) , V >. , <. S , E >. } |
||
| Assertion | structvtxvallem | |- ( ( V e. X /\ E e. Y ) -> 2 <_ ( # ` dom G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | structvtxvallem.s | |- S e. NN |
|
| 2 | structvtxvallem.b | |- ( Base ` ndx ) < S |
|
| 3 | structvtxvallem.g | |- G = { <. ( Base ` ndx ) , V >. , <. S , E >. } |
|
| 4 | fvexd | |- ( ( V e. X /\ E e. Y ) -> ( Base ` ndx ) e. _V ) |
|
| 5 | 1 | a1i | |- ( ( V e. X /\ E e. Y ) -> S e. NN ) |
| 6 | simpl | |- ( ( V e. X /\ E e. Y ) -> V e. X ) |
|
| 7 | simpr | |- ( ( V e. X /\ E e. Y ) -> E e. Y ) |
|
| 8 | prex | |- { <. ( Base ` ndx ) , V >. , <. S , E >. } e. _V |
|
| 9 | 3 8 | eqeltri | |- G e. _V |
| 10 | 9 | a1i | |- ( ( V e. X /\ E e. Y ) -> G e. _V ) |
| 11 | basendxnn | |- ( Base ` ndx ) e. NN |
|
| 12 | 11 | nnrei | |- ( Base ` ndx ) e. RR |
| 13 | 12 2 | ltneii | |- ( Base ` ndx ) =/= S |
| 14 | 13 | a1i | |- ( ( V e. X /\ E e. Y ) -> ( Base ` ndx ) =/= S ) |
| 15 | 3 | eqimss2i | |- { <. ( Base ` ndx ) , V >. , <. S , E >. } C_ G |
| 16 | 15 | a1i | |- ( ( V e. X /\ E e. Y ) -> { <. ( Base ` ndx ) , V >. , <. S , E >. } C_ G ) |
| 17 | 4 5 6 7 10 14 16 | hashdmpropge2 | |- ( ( V e. X /\ E e. Y ) -> 2 <_ ( # ` dom G ) ) |