This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of vertices of an extensible structure with a base set and another slot. (Contributed by AV, 23-Sep-2020) (Proof shortened by AV, 12-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | structvtxvallem.s | ⊢ 𝑆 ∈ ℕ | |
| structvtxvallem.b | ⊢ ( Base ‘ ndx ) < 𝑆 | ||
| structvtxvallem.g | ⊢ 𝐺 = { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 𝑆 , 𝐸 〉 } | ||
| Assertion | structvtxval | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( Vtx ‘ 𝐺 ) = 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | structvtxvallem.s | ⊢ 𝑆 ∈ ℕ | |
| 2 | structvtxvallem.b | ⊢ ( Base ‘ ndx ) < 𝑆 | |
| 3 | structvtxvallem.g | ⊢ 𝐺 = { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 𝑆 , 𝐸 〉 } | |
| 4 | 3 2 1 | 2strstr | ⊢ 𝐺 Struct 〈 ( Base ‘ ndx ) , 𝑆 〉 |
| 5 | 4 | a1i | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 𝐺 Struct 〈 ( Base ‘ ndx ) , 𝑆 〉 ) |
| 6 | 1 2 3 | structvtxvallem | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 2 ≤ ( ♯ ‘ dom 𝐺 ) ) |
| 7 | simpl | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 𝑉 ∈ 𝑋 ) | |
| 8 | opex | ⊢ 〈 ( Base ‘ ndx ) , 𝑉 〉 ∈ V | |
| 9 | 8 | prid1 | ⊢ 〈 ( Base ‘ ndx ) , 𝑉 〉 ∈ { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 𝑆 , 𝐸 〉 } |
| 10 | 9 3 | eleqtrri | ⊢ 〈 ( Base ‘ ndx ) , 𝑉 〉 ∈ 𝐺 |
| 11 | 10 | a1i | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 〈 ( Base ‘ ndx ) , 𝑉 〉 ∈ 𝐺 ) |
| 12 | 5 6 7 11 | basvtxval | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( Vtx ‘ 𝐺 ) = 𝑉 ) |