This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction version of strfv2 . (Contributed by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | strfv2d.e | ⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) | |
| strfv2d.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| strfv2d.f | ⊢ ( 𝜑 → Fun ◡ ◡ 𝑆 ) | ||
| strfv2d.n | ⊢ ( 𝜑 → 〈 ( 𝐸 ‘ ndx ) , 𝐶 〉 ∈ 𝑆 ) | ||
| strfv2d.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) | ||
| Assertion | strfv2d | ⊢ ( 𝜑 → 𝐶 = ( 𝐸 ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strfv2d.e | ⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) | |
| 2 | strfv2d.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 3 | strfv2d.f | ⊢ ( 𝜑 → Fun ◡ ◡ 𝑆 ) | |
| 4 | strfv2d.n | ⊢ ( 𝜑 → 〈 ( 𝐸 ‘ ndx ) , 𝐶 〉 ∈ 𝑆 ) | |
| 5 | strfv2d.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) | |
| 6 | 1 2 | strfvnd | ⊢ ( 𝜑 → ( 𝐸 ‘ 𝑆 ) = ( 𝑆 ‘ ( 𝐸 ‘ ndx ) ) ) |
| 7 | cnvcnv2 | ⊢ ◡ ◡ 𝑆 = ( 𝑆 ↾ V ) | |
| 8 | 7 | fveq1i | ⊢ ( ◡ ◡ 𝑆 ‘ ( 𝐸 ‘ ndx ) ) = ( ( 𝑆 ↾ V ) ‘ ( 𝐸 ‘ ndx ) ) |
| 9 | fvex | ⊢ ( 𝐸 ‘ ndx ) ∈ V | |
| 10 | fvres | ⊢ ( ( 𝐸 ‘ ndx ) ∈ V → ( ( 𝑆 ↾ V ) ‘ ( 𝐸 ‘ ndx ) ) = ( 𝑆 ‘ ( 𝐸 ‘ ndx ) ) ) | |
| 11 | 9 10 | ax-mp | ⊢ ( ( 𝑆 ↾ V ) ‘ ( 𝐸 ‘ ndx ) ) = ( 𝑆 ‘ ( 𝐸 ‘ ndx ) ) |
| 12 | 8 11 | eqtri | ⊢ ( ◡ ◡ 𝑆 ‘ ( 𝐸 ‘ ndx ) ) = ( 𝑆 ‘ ( 𝐸 ‘ ndx ) ) |
| 13 | 5 | elexd | ⊢ ( 𝜑 → 𝐶 ∈ V ) |
| 14 | opelxpi | ⊢ ( ( ( 𝐸 ‘ ndx ) ∈ V ∧ 𝐶 ∈ V ) → 〈 ( 𝐸 ‘ ndx ) , 𝐶 〉 ∈ ( V × V ) ) | |
| 15 | 9 13 14 | sylancr | ⊢ ( 𝜑 → 〈 ( 𝐸 ‘ ndx ) , 𝐶 〉 ∈ ( V × V ) ) |
| 16 | 4 15 | elind | ⊢ ( 𝜑 → 〈 ( 𝐸 ‘ ndx ) , 𝐶 〉 ∈ ( 𝑆 ∩ ( V × V ) ) ) |
| 17 | cnvcnv | ⊢ ◡ ◡ 𝑆 = ( 𝑆 ∩ ( V × V ) ) | |
| 18 | 16 17 | eleqtrrdi | ⊢ ( 𝜑 → 〈 ( 𝐸 ‘ ndx ) , 𝐶 〉 ∈ ◡ ◡ 𝑆 ) |
| 19 | funopfv | ⊢ ( Fun ◡ ◡ 𝑆 → ( 〈 ( 𝐸 ‘ ndx ) , 𝐶 〉 ∈ ◡ ◡ 𝑆 → ( ◡ ◡ 𝑆 ‘ ( 𝐸 ‘ ndx ) ) = 𝐶 ) ) | |
| 20 | 3 18 19 | sylc | ⊢ ( 𝜑 → ( ◡ ◡ 𝑆 ‘ ( 𝐸 ‘ ndx ) ) = 𝐶 ) |
| 21 | 12 20 | eqtr3id | ⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐸 ‘ ndx ) ) = 𝐶 ) |
| 22 | 6 21 | eqtr2d | ⊢ ( 𝜑 → 𝐶 = ( 𝐸 ‘ 𝑆 ) ) |