This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A variation on strfv to avoid asserting that S itself is a function, which involves sethood of all the ordered pair components of S . (Contributed by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | strfv2.s | ⊢ 𝑆 ∈ V | |
| strfv2.f | ⊢ Fun ◡ ◡ 𝑆 | ||
| strfv2.e | ⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) | ||
| strfv2.n | ⊢ 〈 ( 𝐸 ‘ ndx ) , 𝐶 〉 ∈ 𝑆 | ||
| Assertion | strfv2 | ⊢ ( 𝐶 ∈ 𝑉 → 𝐶 = ( 𝐸 ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strfv2.s | ⊢ 𝑆 ∈ V | |
| 2 | strfv2.f | ⊢ Fun ◡ ◡ 𝑆 | |
| 3 | strfv2.e | ⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) | |
| 4 | strfv2.n | ⊢ 〈 ( 𝐸 ‘ ndx ) , 𝐶 〉 ∈ 𝑆 | |
| 5 | 1 | a1i | ⊢ ( 𝐶 ∈ 𝑉 → 𝑆 ∈ V ) |
| 6 | 2 | a1i | ⊢ ( 𝐶 ∈ 𝑉 → Fun ◡ ◡ 𝑆 ) |
| 7 | 4 | a1i | ⊢ ( 𝐶 ∈ 𝑉 → 〈 ( 𝐸 ‘ ndx ) , 𝐶 〉 ∈ 𝑆 ) |
| 8 | id | ⊢ ( 𝐶 ∈ 𝑉 → 𝐶 ∈ 𝑉 ) | |
| 9 | 3 5 6 7 8 | strfv2d | ⊢ ( 𝐶 ∈ 𝑉 → 𝐶 = ( 𝐸 ‘ 𝑆 ) ) |