This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction version of strfv2 . (Contributed by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | strfv2d.e | |- E = Slot ( E ` ndx ) |
|
| strfv2d.s | |- ( ph -> S e. V ) |
||
| strfv2d.f | |- ( ph -> Fun `' `' S ) |
||
| strfv2d.n | |- ( ph -> <. ( E ` ndx ) , C >. e. S ) |
||
| strfv2d.c | |- ( ph -> C e. W ) |
||
| Assertion | strfv2d | |- ( ph -> C = ( E ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strfv2d.e | |- E = Slot ( E ` ndx ) |
|
| 2 | strfv2d.s | |- ( ph -> S e. V ) |
|
| 3 | strfv2d.f | |- ( ph -> Fun `' `' S ) |
|
| 4 | strfv2d.n | |- ( ph -> <. ( E ` ndx ) , C >. e. S ) |
|
| 5 | strfv2d.c | |- ( ph -> C e. W ) |
|
| 6 | 1 2 | strfvnd | |- ( ph -> ( E ` S ) = ( S ` ( E ` ndx ) ) ) |
| 7 | cnvcnv2 | |- `' `' S = ( S |` _V ) |
|
| 8 | 7 | fveq1i | |- ( `' `' S ` ( E ` ndx ) ) = ( ( S |` _V ) ` ( E ` ndx ) ) |
| 9 | fvex | |- ( E ` ndx ) e. _V |
|
| 10 | fvres | |- ( ( E ` ndx ) e. _V -> ( ( S |` _V ) ` ( E ` ndx ) ) = ( S ` ( E ` ndx ) ) ) |
|
| 11 | 9 10 | ax-mp | |- ( ( S |` _V ) ` ( E ` ndx ) ) = ( S ` ( E ` ndx ) ) |
| 12 | 8 11 | eqtri | |- ( `' `' S ` ( E ` ndx ) ) = ( S ` ( E ` ndx ) ) |
| 13 | 5 | elexd | |- ( ph -> C e. _V ) |
| 14 | opelxpi | |- ( ( ( E ` ndx ) e. _V /\ C e. _V ) -> <. ( E ` ndx ) , C >. e. ( _V X. _V ) ) |
|
| 15 | 9 13 14 | sylancr | |- ( ph -> <. ( E ` ndx ) , C >. e. ( _V X. _V ) ) |
| 16 | 4 15 | elind | |- ( ph -> <. ( E ` ndx ) , C >. e. ( S i^i ( _V X. _V ) ) ) |
| 17 | cnvcnv | |- `' `' S = ( S i^i ( _V X. _V ) ) |
|
| 18 | 16 17 | eleqtrrdi | |- ( ph -> <. ( E ` ndx ) , C >. e. `' `' S ) |
| 19 | funopfv | |- ( Fun `' `' S -> ( <. ( E ` ndx ) , C >. e. `' `' S -> ( `' `' S ` ( E ` ndx ) ) = C ) ) |
|
| 20 | 3 18 19 | sylc | |- ( ph -> ( `' `' S ` ( E ` ndx ) ) = C ) |
| 21 | 12 20 | eqtr3id | |- ( ph -> ( S ` ( E ` ndx ) ) = C ) |
| 22 | 6 21 | eqtr2d | |- ( ph -> C = ( E ` S ) ) |