This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Stirling's approximation formula for n factorial: here convergence is expressed with respect to the standard topology on the reals. The main theorem stirling is proven for convergence in the topology of complex numbers. The variable R is used to denote convergence with respect to the standard topology on the reals. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | stirlingr.1 | ⊢ 𝑆 = ( 𝑛 ∈ ℕ0 ↦ ( ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) | |
| stirlingr.2 | ⊢ 𝑅 = ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) | ||
| Assertion | stirlingr | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( 𝑆 ‘ 𝑛 ) ) ) 𝑅 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stirlingr.1 | ⊢ 𝑆 = ( 𝑛 ∈ ℕ0 ↦ ( ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) | |
| 2 | stirlingr.2 | ⊢ 𝑅 = ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) | |
| 3 | 1 | stirling | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( 𝑆 ‘ 𝑛 ) ) ) ⇝ 1 |
| 4 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 5 | 1zzd | ⊢ ( ⊤ → 1 ∈ ℤ ) | |
| 6 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( 𝑆 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( 𝑆 ‘ 𝑛 ) ) ) | |
| 7 | nnnn0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) | |
| 8 | faccl | ⊢ ( 𝑛 ∈ ℕ0 → ( ! ‘ 𝑛 ) ∈ ℕ ) | |
| 9 | nnre | ⊢ ( ( ! ‘ 𝑛 ) ∈ ℕ → ( ! ‘ 𝑛 ) ∈ ℝ ) | |
| 10 | 7 8 9 | 3syl | ⊢ ( 𝑛 ∈ ℕ → ( ! ‘ 𝑛 ) ∈ ℝ ) |
| 11 | 2re | ⊢ 2 ∈ ℝ | |
| 12 | 11 | a1i | ⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℝ ) |
| 13 | pire | ⊢ π ∈ ℝ | |
| 14 | 13 | a1i | ⊢ ( 𝑛 ∈ ℕ → π ∈ ℝ ) |
| 15 | 12 14 | remulcld | ⊢ ( 𝑛 ∈ ℕ → ( 2 · π ) ∈ ℝ ) |
| 16 | nnre | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) | |
| 17 | 15 16 | remulcld | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · π ) · 𝑛 ) ∈ ℝ ) |
| 18 | 0re | ⊢ 0 ∈ ℝ | |
| 19 | 18 | a1i | ⊢ ( 𝑛 ∈ ℕ → 0 ∈ ℝ ) |
| 20 | 2pos | ⊢ 0 < 2 | |
| 21 | 20 | a1i | ⊢ ( 𝑛 ∈ ℕ → 0 < 2 ) |
| 22 | 19 12 21 | ltled | ⊢ ( 𝑛 ∈ ℕ → 0 ≤ 2 ) |
| 23 | pipos | ⊢ 0 < π | |
| 24 | 18 13 23 | ltleii | ⊢ 0 ≤ π |
| 25 | 24 | a1i | ⊢ ( 𝑛 ∈ ℕ → 0 ≤ π ) |
| 26 | 12 14 22 25 | mulge0d | ⊢ ( 𝑛 ∈ ℕ → 0 ≤ ( 2 · π ) ) |
| 27 | 7 | nn0ge0d | ⊢ ( 𝑛 ∈ ℕ → 0 ≤ 𝑛 ) |
| 28 | 15 16 26 27 | mulge0d | ⊢ ( 𝑛 ∈ ℕ → 0 ≤ ( ( 2 · π ) · 𝑛 ) ) |
| 29 | 17 28 | resqrtcld | ⊢ ( 𝑛 ∈ ℕ → ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) ∈ ℝ ) |
| 30 | ere | ⊢ e ∈ ℝ | |
| 31 | 30 | a1i | ⊢ ( 𝑛 ∈ ℕ → e ∈ ℝ ) |
| 32 | epos | ⊢ 0 < e | |
| 33 | 18 32 | gtneii | ⊢ e ≠ 0 |
| 34 | 33 | a1i | ⊢ ( 𝑛 ∈ ℕ → e ≠ 0 ) |
| 35 | 16 31 34 | redivcld | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 / e ) ∈ ℝ ) |
| 36 | 35 7 | reexpcld | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / e ) ↑ 𝑛 ) ∈ ℝ ) |
| 37 | 29 36 | remulcld | ⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ∈ ℝ ) |
| 38 | 1 | fvmpt2 | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ∈ ℝ ) → ( 𝑆 ‘ 𝑛 ) = ( ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) |
| 39 | 7 37 38 | syl2anc | ⊢ ( 𝑛 ∈ ℕ → ( 𝑆 ‘ 𝑛 ) = ( ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) |
| 40 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 41 | 40 | a1i | ⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℝ+ ) |
| 42 | pirp | ⊢ π ∈ ℝ+ | |
| 43 | 42 | a1i | ⊢ ( 𝑛 ∈ ℕ → π ∈ ℝ+ ) |
| 44 | 41 43 | rpmulcld | ⊢ ( 𝑛 ∈ ℕ → ( 2 · π ) ∈ ℝ+ ) |
| 45 | nnrp | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) | |
| 46 | 44 45 | rpmulcld | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · π ) · 𝑛 ) ∈ ℝ+ ) |
| 47 | 46 | rpsqrtcld | ⊢ ( 𝑛 ∈ ℕ → ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) ∈ ℝ+ ) |
| 48 | epr | ⊢ e ∈ ℝ+ | |
| 49 | 48 | a1i | ⊢ ( 𝑛 ∈ ℕ → e ∈ ℝ+ ) |
| 50 | 45 49 | rpdivcld | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 / e ) ∈ ℝ+ ) |
| 51 | nnz | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ ) | |
| 52 | 50 51 | rpexpcld | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / e ) ↑ 𝑛 ) ∈ ℝ+ ) |
| 53 | 47 52 | rpmulcld | ⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ∈ ℝ+ ) |
| 54 | 39 53 | eqeltrd | ⊢ ( 𝑛 ∈ ℕ → ( 𝑆 ‘ 𝑛 ) ∈ ℝ+ ) |
| 55 | 10 54 | rerpdivcld | ⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ 𝑛 ) / ( 𝑆 ‘ 𝑛 ) ) ∈ ℝ ) |
| 56 | 6 55 | fmpti | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( 𝑆 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ |
| 57 | 56 | a1i | ⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( 𝑆 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ ) |
| 58 | 2 4 5 57 | climreeq | ⊢ ( ⊤ → ( ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( 𝑆 ‘ 𝑛 ) ) ) 𝑅 1 ↔ ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( 𝑆 ‘ 𝑛 ) ) ) ⇝ 1 ) ) |
| 59 | 58 | mptru | ⊢ ( ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( 𝑆 ‘ 𝑛 ) ) ) 𝑅 1 ↔ ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( 𝑆 ‘ 𝑛 ) ) ) ⇝ 1 ) |
| 60 | 3 59 | mpbir | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( 𝑆 ‘ 𝑛 ) ) ) 𝑅 1 |