This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Stirling's approximation formula for n factorial: here convergence is expressed with respect to the standard topology on the reals. The main theorem stirling is proven for convergence in the topology of complex numbers. The variable R is used to denote convergence with respect to the standard topology on the reals. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | stirlingr.1 | |- S = ( n e. NN0 |-> ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) ) |
|
| stirlingr.2 | |- R = ( ~~>t ` ( topGen ` ran (,) ) ) |
||
| Assertion | stirlingr | |- ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) R 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stirlingr.1 | |- S = ( n e. NN0 |-> ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) ) |
|
| 2 | stirlingr.2 | |- R = ( ~~>t ` ( topGen ` ran (,) ) ) |
|
| 3 | 1 | stirling | |- ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) ~~> 1 |
| 4 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 5 | 1zzd | |- ( T. -> 1 e. ZZ ) |
|
| 6 | eqid | |- ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) = ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) |
|
| 7 | nnnn0 | |- ( n e. NN -> n e. NN0 ) |
|
| 8 | faccl | |- ( n e. NN0 -> ( ! ` n ) e. NN ) |
|
| 9 | nnre | |- ( ( ! ` n ) e. NN -> ( ! ` n ) e. RR ) |
|
| 10 | 7 8 9 | 3syl | |- ( n e. NN -> ( ! ` n ) e. RR ) |
| 11 | 2re | |- 2 e. RR |
|
| 12 | 11 | a1i | |- ( n e. NN -> 2 e. RR ) |
| 13 | pire | |- _pi e. RR |
|
| 14 | 13 | a1i | |- ( n e. NN -> _pi e. RR ) |
| 15 | 12 14 | remulcld | |- ( n e. NN -> ( 2 x. _pi ) e. RR ) |
| 16 | nnre | |- ( n e. NN -> n e. RR ) |
|
| 17 | 15 16 | remulcld | |- ( n e. NN -> ( ( 2 x. _pi ) x. n ) e. RR ) |
| 18 | 0re | |- 0 e. RR |
|
| 19 | 18 | a1i | |- ( n e. NN -> 0 e. RR ) |
| 20 | 2pos | |- 0 < 2 |
|
| 21 | 20 | a1i | |- ( n e. NN -> 0 < 2 ) |
| 22 | 19 12 21 | ltled | |- ( n e. NN -> 0 <_ 2 ) |
| 23 | pipos | |- 0 < _pi |
|
| 24 | 18 13 23 | ltleii | |- 0 <_ _pi |
| 25 | 24 | a1i | |- ( n e. NN -> 0 <_ _pi ) |
| 26 | 12 14 22 25 | mulge0d | |- ( n e. NN -> 0 <_ ( 2 x. _pi ) ) |
| 27 | 7 | nn0ge0d | |- ( n e. NN -> 0 <_ n ) |
| 28 | 15 16 26 27 | mulge0d | |- ( n e. NN -> 0 <_ ( ( 2 x. _pi ) x. n ) ) |
| 29 | 17 28 | resqrtcld | |- ( n e. NN -> ( sqrt ` ( ( 2 x. _pi ) x. n ) ) e. RR ) |
| 30 | ere | |- _e e. RR |
|
| 31 | 30 | a1i | |- ( n e. NN -> _e e. RR ) |
| 32 | epos | |- 0 < _e |
|
| 33 | 18 32 | gtneii | |- _e =/= 0 |
| 34 | 33 | a1i | |- ( n e. NN -> _e =/= 0 ) |
| 35 | 16 31 34 | redivcld | |- ( n e. NN -> ( n / _e ) e. RR ) |
| 36 | 35 7 | reexpcld | |- ( n e. NN -> ( ( n / _e ) ^ n ) e. RR ) |
| 37 | 29 36 | remulcld | |- ( n e. NN -> ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) e. RR ) |
| 38 | 1 | fvmpt2 | |- ( ( n e. NN0 /\ ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) e. RR ) -> ( S ` n ) = ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) ) |
| 39 | 7 37 38 | syl2anc | |- ( n e. NN -> ( S ` n ) = ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) ) |
| 40 | 2rp | |- 2 e. RR+ |
|
| 41 | 40 | a1i | |- ( n e. NN -> 2 e. RR+ ) |
| 42 | pirp | |- _pi e. RR+ |
|
| 43 | 42 | a1i | |- ( n e. NN -> _pi e. RR+ ) |
| 44 | 41 43 | rpmulcld | |- ( n e. NN -> ( 2 x. _pi ) e. RR+ ) |
| 45 | nnrp | |- ( n e. NN -> n e. RR+ ) |
|
| 46 | 44 45 | rpmulcld | |- ( n e. NN -> ( ( 2 x. _pi ) x. n ) e. RR+ ) |
| 47 | 46 | rpsqrtcld | |- ( n e. NN -> ( sqrt ` ( ( 2 x. _pi ) x. n ) ) e. RR+ ) |
| 48 | epr | |- _e e. RR+ |
|
| 49 | 48 | a1i | |- ( n e. NN -> _e e. RR+ ) |
| 50 | 45 49 | rpdivcld | |- ( n e. NN -> ( n / _e ) e. RR+ ) |
| 51 | nnz | |- ( n e. NN -> n e. ZZ ) |
|
| 52 | 50 51 | rpexpcld | |- ( n e. NN -> ( ( n / _e ) ^ n ) e. RR+ ) |
| 53 | 47 52 | rpmulcld | |- ( n e. NN -> ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) e. RR+ ) |
| 54 | 39 53 | eqeltrd | |- ( n e. NN -> ( S ` n ) e. RR+ ) |
| 55 | 10 54 | rerpdivcld | |- ( n e. NN -> ( ( ! ` n ) / ( S ` n ) ) e. RR ) |
| 56 | 6 55 | fmpti | |- ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) : NN --> RR |
| 57 | 56 | a1i | |- ( T. -> ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) : NN --> RR ) |
| 58 | 2 4 5 57 | climreeq | |- ( T. -> ( ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) R 1 <-> ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) ~~> 1 ) ) |
| 59 | 58 | mptru | |- ( ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) R 1 <-> ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) ~~> 1 ) |
| 60 | 3 59 | mpbir | |- ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) R 1 |