This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subclass of the intersection of a restricted class abstraction. (Contributed by NM, 30-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssintrab | |- ( A C_ |^| { x e. B | ph } <-> A. x e. B ( ph -> A C_ x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | |- { x e. B | ph } = { x | ( x e. B /\ ph ) } |
|
| 2 | 1 | inteqi | |- |^| { x e. B | ph } = |^| { x | ( x e. B /\ ph ) } |
| 3 | 2 | sseq2i | |- ( A C_ |^| { x e. B | ph } <-> A C_ |^| { x | ( x e. B /\ ph ) } ) |
| 4 | impexp | |- ( ( ( x e. B /\ ph ) -> A C_ x ) <-> ( x e. B -> ( ph -> A C_ x ) ) ) |
|
| 5 | 4 | albii | |- ( A. x ( ( x e. B /\ ph ) -> A C_ x ) <-> A. x ( x e. B -> ( ph -> A C_ x ) ) ) |
| 6 | ssintab | |- ( A C_ |^| { x | ( x e. B /\ ph ) } <-> A. x ( ( x e. B /\ ph ) -> A C_ x ) ) |
|
| 7 | df-ral | |- ( A. x e. B ( ph -> A C_ x ) <-> A. x ( x e. B -> ( ph -> A C_ x ) ) ) |
|
| 8 | 5 6 7 | 3bitr4i | |- ( A C_ |^| { x | ( x e. B /\ ph ) } <-> A. x e. B ( ph -> A C_ x ) ) |
| 9 | 3 8 | bitri | |- ( A C_ |^| { x e. B | ph } <-> A. x e. B ( ph -> A C_ x ) ) |