This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the union of a class is included in its intersection, the class is either the empty set or a singleton ( uniintsn ). (Contributed by NM, 30-Oct-2010) (Proof shortened by Andrew Salmon, 25-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unissint | ⊢ ( ∪ 𝐴 ⊆ ∩ 𝐴 ↔ ( 𝐴 = ∅ ∨ ∪ 𝐴 = ∩ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( ∪ 𝐴 ⊆ ∩ 𝐴 ∧ ¬ 𝐴 = ∅ ) → ∪ 𝐴 ⊆ ∩ 𝐴 ) | |
| 2 | df-ne | ⊢ ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ ) | |
| 3 | intssuni | ⊢ ( 𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴 ) | |
| 4 | 2 3 | sylbir | ⊢ ( ¬ 𝐴 = ∅ → ∩ 𝐴 ⊆ ∪ 𝐴 ) |
| 5 | 4 | adantl | ⊢ ( ( ∪ 𝐴 ⊆ ∩ 𝐴 ∧ ¬ 𝐴 = ∅ ) → ∩ 𝐴 ⊆ ∪ 𝐴 ) |
| 6 | 1 5 | eqssd | ⊢ ( ( ∪ 𝐴 ⊆ ∩ 𝐴 ∧ ¬ 𝐴 = ∅ ) → ∪ 𝐴 = ∩ 𝐴 ) |
| 7 | 6 | ex | ⊢ ( ∪ 𝐴 ⊆ ∩ 𝐴 → ( ¬ 𝐴 = ∅ → ∪ 𝐴 = ∩ 𝐴 ) ) |
| 8 | 7 | orrd | ⊢ ( ∪ 𝐴 ⊆ ∩ 𝐴 → ( 𝐴 = ∅ ∨ ∪ 𝐴 = ∩ 𝐴 ) ) |
| 9 | ssv | ⊢ ∪ 𝐴 ⊆ V | |
| 10 | int0 | ⊢ ∩ ∅ = V | |
| 11 | 9 10 | sseqtrri | ⊢ ∪ 𝐴 ⊆ ∩ ∅ |
| 12 | inteq | ⊢ ( 𝐴 = ∅ → ∩ 𝐴 = ∩ ∅ ) | |
| 13 | 11 12 | sseqtrrid | ⊢ ( 𝐴 = ∅ → ∪ 𝐴 ⊆ ∩ 𝐴 ) |
| 14 | eqimss | ⊢ ( ∪ 𝐴 = ∩ 𝐴 → ∪ 𝐴 ⊆ ∩ 𝐴 ) | |
| 15 | 13 14 | jaoi | ⊢ ( ( 𝐴 = ∅ ∨ ∪ 𝐴 = ∩ 𝐴 ) → ∪ 𝐴 ⊆ ∩ 𝐴 ) |
| 16 | 8 15 | impbii | ⊢ ( ∪ 𝐴 ⊆ ∩ 𝐴 ↔ ( 𝐴 = ∅ ∨ ∪ 𝐴 = ∩ 𝐴 ) ) |