This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity function is a continuous function from one topology to another topology on the same set iff the domain is finer than the codomain. (Contributed by Mario Carneiro, 21-Mar-2015) (Revised by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssidcn | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` X ) ) -> ( ( _I |` X ) e. ( J Cn K ) <-> K C_ J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscn | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` X ) ) -> ( ( _I |` X ) e. ( J Cn K ) <-> ( ( _I |` X ) : X --> X /\ A. x e. K ( `' ( _I |` X ) " x ) e. J ) ) ) |
|
| 2 | f1oi | |- ( _I |` X ) : X -1-1-onto-> X |
|
| 3 | f1of | |- ( ( _I |` X ) : X -1-1-onto-> X -> ( _I |` X ) : X --> X ) |
|
| 4 | 2 3 | ax-mp | |- ( _I |` X ) : X --> X |
| 5 | 4 | biantrur | |- ( A. x e. K ( `' ( _I |` X ) " x ) e. J <-> ( ( _I |` X ) : X --> X /\ A. x e. K ( `' ( _I |` X ) " x ) e. J ) ) |
| 6 | 1 5 | bitr4di | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` X ) ) -> ( ( _I |` X ) e. ( J Cn K ) <-> A. x e. K ( `' ( _I |` X ) " x ) e. J ) ) |
| 7 | cnvresid | |- `' ( _I |` X ) = ( _I |` X ) |
|
| 8 | 7 | imaeq1i | |- ( `' ( _I |` X ) " x ) = ( ( _I |` X ) " x ) |
| 9 | elssuni | |- ( x e. K -> x C_ U. K ) |
|
| 10 | 9 | adantl | |- ( ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` X ) ) /\ x e. K ) -> x C_ U. K ) |
| 11 | toponuni | |- ( K e. ( TopOn ` X ) -> X = U. K ) |
|
| 12 | 11 | ad2antlr | |- ( ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` X ) ) /\ x e. K ) -> X = U. K ) |
| 13 | 10 12 | sseqtrrd | |- ( ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` X ) ) /\ x e. K ) -> x C_ X ) |
| 14 | resiima | |- ( x C_ X -> ( ( _I |` X ) " x ) = x ) |
|
| 15 | 13 14 | syl | |- ( ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` X ) ) /\ x e. K ) -> ( ( _I |` X ) " x ) = x ) |
| 16 | 8 15 | eqtrid | |- ( ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` X ) ) /\ x e. K ) -> ( `' ( _I |` X ) " x ) = x ) |
| 17 | 16 | eleq1d | |- ( ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` X ) ) /\ x e. K ) -> ( ( `' ( _I |` X ) " x ) e. J <-> x e. J ) ) |
| 18 | 17 | ralbidva | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` X ) ) -> ( A. x e. K ( `' ( _I |` X ) " x ) e. J <-> A. x e. K x e. J ) ) |
| 19 | dfss3 | |- ( K C_ J <-> A. x e. K x e. J ) |
|
| 20 | 18 19 | bitr4di | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` X ) ) -> ( A. x e. K ( `' ( _I |` X ) " x ) e. J <-> K C_ J ) ) |
| 21 | 6 20 | bitrd | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` X ) ) -> ( ( _I |` X ) e. ( J Cn K ) <-> K C_ J ) ) |